

New Freedoms Through Computer Sirens - a Minority Report

©C1974 heder H．Nelon

This in the nip side of Computer Lib
（Feel tree to begin here．The other side in Just if you want to know more about computers which are changeable it．）
（But if you change your mind it might
be fun to browse．）

In a sense，the other aide has been a come－on for this side．But it＇s an honest come－
on：I तgure the more you know，the readier on：I figure the more you know，the readier
you＇lu be for what l＇m saying here．Not neces you＇lu be for what l＇m saying here．Not necks－
daily to agree or be＂sold．＂but to think about it in the non－simple terms that are going to be necessary．

The material here has been chosen largely for its exhilarating and inspirational character No matter what your background or technical！ knowledge，you＇ll be able to understand some of
this，and not be able to understand some of the this．and not be able to understand some of the rest．That＇s partly from the hasty preparation
of this book．and partly from the variety of in of this book．and partly from the variety of in－
treats $\mathrm{r} m$ trying to comprise here．I want to present various dreams and their resulting dream machines，all legitimate．

If the computer is a projective system，or Rorschach inkblot，as alleged on the other side， the real projective systems－the ones with pro－
lectors in them－－are all the more so．The things people try to do with movies，TV and the more glamorous uses of the computer，whereby it makes pictures on screens－－are strange inversions and foldovers of the rest of the mind and heart
That＇s the peculiar origami of the self．

Very well．This book－－this side，Dream Machines－－is meant to let you see the choice
of dreams．Noting that every company and uni－ of dreams．Noting that every company and uni－ wave of the future，t think $\overline{\text { in }}$ is more important than ever to have the alternatives spread out clearly．

But the＂experts＂are not going to be much help：they are part of the problem．On both sides，the academic and the industrial，they are
being painfully pontifical and bombastic in the being painfully pons（see＂Babel＇s in Toyland jarring new jargons（see＂Babel＇s in Toyland，＂ things are funnier than the pretensions of those who profess to dignity，sobriety and profession－ sadism of their expert predictions－－especially when they，too are pouring out their own personal views under the guise of technicality．Most pro－ ple don＇t dream of what＇s going to hit the fan． And the computer and electronics people are like generals preparing for the last war．

Frankly．I think it＇s an outrage making it look as if there＇s any kind of scientific basis to these things：there is an underlevel of technicality． but like the foundation of a cathedral，it serves only to support what rises from it．THE TECH－ NiCALITIES MATTER A LOT．BUT THE UNIFYING
vision matters more．

Wo more penates ain ore bents．
 Kids＇ingle with new mestumg．

THE GESTALT，DEAR BRUTUS， IS NOT IN OUR STARS BUT IN OURSELVES．

DREAMS

Technology is an expression of man＇s dreams．If man did not indulge his fan tastes，his thoughts alone would inhibit the
development of technology itself．Ancient visionaries spoke of development of technology itself．Ancient visionaries spoke of
distant times and places，where men flew around and about，and some could see each other at great distance．The technological realities of today are already obsolete and the future of technology is bound only by the 11 its of our dreams．Modern outgrowths and externs ions of those senses witch have become dominant in our social development．

CHILDREN OF
 机和和：

For every dram，many details and inti－ caches have to be whittled and interlocked．Their the person who is trying to create whatever it －is Each confabulation of possibilities turns out to have the most intricate and exactly detailed results （This is why 1 am irritated by those who think ＂electronic media＂are all alike．）

And each possible combination you choose has different precise structures implicit in it． arrangements and units which flow from these ramified details．Implicit in Radio lurk the Time Slot and the Program．But many of these possibilities remain unnoticed or unseen，for a variety of social or economic reasons．

Why does it matter？
It matters because we live in media，as fish live in water．（Many people are prisoners want to use them to communicate artistic visions．）

But today，at this moment，we can and mut design the media，design the molecules of our new water，and believe the details of this design
matter very deeply．They will be with us for a matter very deeply．They win be with us for a very long it the．pere as as an man has may even buy more time－or the open－ended future most suppose remains．（See＂Endgame，＂ p． 6 ．）

So in these pages 1 hope to orient you some－ What to various of the proposed dreams．This is MeClouds，each tinkering toward some new night of fancy in his own sensorium．

But bear in mind that hard－edged fantasy is the corner of tomorrow．The great American ream often becomes the great American novelty lancing plan．

The most exciting things here are those that involve computers：notably，because compo－ and thoughtful medium very soon．

That＇s why this side is wedded to the other： if you want to understand computers，you can take the first step by turning the book over．I figure that the more you know about computers－－especial－ ty about minicomputers and the way on－line sym－ lems can respond to our slightest acts－－the better your imagination can how between he lecricall－ hes，can slide he parts bugeye，can discern The computer is not a limitless partner，but it is deeply versatile： 10 work with it we must under－ stand what it can do，the options and the coats．

My special concern，all too tightly framed here，is the use of computers to help people write，think and show．But I think presentation by computer is a branch of show biz and writing not of psychology．engineering or pedagogy． This would be idle disputation if it did not have for－reaching consequences for the designs of the systems we are all going to have to live with Al worst，I tear these may lock us in；at best， ions of literature film and scholarship．But we must create our brave new worlds with art zest．intelligence，and the highest possible ideals

I have not mentioned the emotions．Movies all of us been part of important emotional moments． The same is going to happen with the new media To work at a highly responsive computer display screen，for instance，can be deeply exciting like flying an airplane through a canyon，or talking to somebody brilliant．This is as it should be．（＂The reason is，and by rights ought

In the design of our future media and sym－ toms，we should not shrink from this emotions］ aspect as a legitimate part of our fantic（see p． DM4 ）design．The substratum of technicalities and the mind－bending，gut－slamming effects they produce，are two sides of the same coin；and to understand the one is not necessarily to be alienated from the other

Thus it is tor the wholiness of the human spirit．that we must design．

（cover）

Our Coped Gmanuticant fees les．scepter
SUPT SSNSENTMEETS ATHPERTEXT！
aUthor＇s counterculture credentials
Writer，showman．generalist．Gemini，moon in Libra，Gemini rising
Antimere of whet may have dropout．I have relatively little interest in improving the educational system within the existing framework Author of what may have been world＇s Arst rock musical，＂Anything a Everything．＂Swarthmore College．November 1957（with Richard L．Caplan） photographer for a year at Dr．Lilly＇s dolphin lab（Communication Research Institute．Miami．Florida），Attendee of the Great woodstock Festival
（like many others），and it changed my lite（as omer Lifelong media nut．Magazine collector；hung around TV studios as a child．Compulsive explainer．Gimmicist by disposition，computerman by accideatiny

SPECIAL SUPPLEMENT TO THE THIRD PRINTING, Auguit 1975. (C) 1975 Theodor H. Nelson

Gee whiz, folks, here we are at another prin ting and already the big gook by.
us that another yas has gol hat to
This supplement is mainly things that had to This supplement it mind of assumes you've read the book itself or are generally famillar with computers. BCokSTORE BROWSERS: avoid these four pages. NEW OWN
pagea are right,
sorry THE TYPE STILL ISN'T.
SIGGER, but that will require thousands of bucks in new negativesmeaning a lot more have to be sold as is.

YOUR UTDERGROUNI COMPMER MASS

The redoubtable PCC is now six issues and six dollars a year. People'a Computer Company,
p.o. Box 310 , Menlo Park CA 94025 .
BYTE Magazine, S10/year if you hurry, $\$ 12$ later, from Green Publishing Co., Peterborough, NH editorial: Carl Helmers, Box 378, Belmont
Creative Compuring: The Magazine of Recreational $\frac{\text { and }}{\text { P.0. Educational }}$ Box $789-\mathrm{M}$, Momput.ing. Ideametrics, variety of subscription rates: student $\$ 6$, "Individual" $\$ 8$, "Institutional" $\$ 15$.
The Computer $\frac{\text { Hobbyist, } \$ 6 / \text { year, Box } 295 \text {, Cary NC }}{27511 \text {. }} \frac{\text { Hardware-orlented. }}{}$ Computer Notes (for Altalr users; from MITS).
Micro-8 Newsietter, for people really into the Intel. Hal Singeir, Cabrillo High School, 4350 Constellation, Lompoc CA 93436.
$\frac{\text { Simulation }}{\text { Stat }}$ and Gaming Newg, Box 3039 University
Station, Moscow,
Electronotes is the magazine for music syathesizer freaks. Bernie Hutchins, 60 Sheraton Drive, Ithaca NY 14850.
and samething elge entirely,
of Journal, a monthly newsletter on probleme computers. p.O. Box 8844, Washington, D.C. 20003; \$15 a year.
(Note: it is of finterest that a bill on computer privacy in this year's House of Represen-
tatives guat happened to be HR 1984.)

CONRIGHTANI COY WHONTE

One individual I know, who relishes his
counterculture image, told we with angry and shaking voice that he doesn't believe in copyright and that anything that gets near his
computer belongs to him. Weli, don't leave computer belongs to him, Well, don't leave
your manuscripts near such a person. (Why it your manuscripts near such a person. (Why is it always the guys with cushy and secure jobs
who tell you tweedle de dee, ideas should be who tell you tweedle de dee, ideas should be
free, and patents and copyrights are selfish? free, and patents and copyrights are selfish?)
Actually, for the individual, one of the strongest forms of protection available is copyright. Far from obsolete, the copyright makes publishing, and the better computer software, possible, IIt is not generally known that copyright violation is a felony.)
(And ripping off a program you're supposed (And ripping off a program you're supposed to
pay for is not a brave guerrilla affirmation, pay for is not a brave hitting Harold Geneen with a pie, but grand larceny.)
Now that Altairs and LsI-11s have got a
lot of you quys dreaming about selling software, an important question is how to prote your work. Well, you have a champion. Calvin Mooers (see pp. 18-21) is not only a genuine Conputer Pioneer Fiom The Forties,
but, along with Herb Grosch, ploneered the but, along with Herb Grosch, ploneered the beard in front of old man Watmon, Mooers strove to make computers easy to use-- back when that was unheard of.

One of his current interests is in ways grammers can propendent underground-type proand some associates are exploviopments. He ble formation of a group for the legal protection of small software producers and owners. you've writter belongs to you-- a computer prosram, poem or whatever-t slap the following
at the beginning, under the title: at the beginifing, under the title:

(C) 1975 Irving Snerd

substituting, of course, your own name. And ting is used, (c), using parentheses, is considered an acceptable substitute for c-ina-a-circle This not only gives notice to potential
Borzowers, but it has certain strong magical Borzowers, but it has certain strong magical properties as a legal incantation. See your
lawyer for detalls, but don't hesitate to apply lawyer for detalls, but don't hesitate to apply
it liberally to your own work; you may be glad

UNDERGROUND PAGE

$D_{i j} \mathrm{It}$, Ah1 "THEENING" COMNTERDOM

the computer underground of as as the year in whic the computer underground suddenly appeared in
full force. The Altair was probably the big cryatallizing event.
ore. There were the games eauncia overy university, the prank programsers (bee p. $4 \mathrm{p}-9$), and, wherever computers are the center of things, a hared expertence of misch tef and breakthrough There was computer people for peace, a cliquey
and unapproachable group with booths at the conferences (at least, their backs ware alvays turned when you wanted to ank questions). There was the hobby fringe
But now it's gone different. Instead of pretentious company names meant to appeal to ob
tuge businessmen, like Performance Measurement Systems Consultants Group and Bottom-Line-Tron the new companies have rock-group rames like General Turtle, Inc., The Sphere and Loving Grace cybernetics. In this new computer counterculture the main couputer companies are not IBM and Honeywell and Univac, but DEC and MITS and General Turtle; the standard computer is not the 370
but the 11 (or possibly the Altair or the 8). but the 11 (or possibly the Altair or the 8). PI/I, but Basic. Instead of the blg color TV that middle America wants, the underground computernix dreams of his own graphic setup forever running The Game of life in color (see pp. 48-9 and pic p. DM26) (Of course that'1l $\frac{\text { also }}{}$
quire the color TV; see "Bit Maps,"p. In such a world, computers are not a tool but a way of 1 ife. The computer is toy, pet,
checkerboard, music box and Tv . Computers are for making music, computers are for getting people together via community memory, computers are for letter-writing, computers are for art and moviemaking and the anfmated decoration of the home.

Computers are for games; a vast number
ractive game-programs are published and interactive game-programs are published and
swapped around. Almost all are in the BASIC swapped around. Almost all are in the AASIC
language. (Bob Albrecht's WHAT TO DO APTER YOU language. (Bob Albrecht's WHAT TO DO APTER YOU
HIT RETURN is gaid to be definitive-- $\$ 7.50$ from people's computer company, 1919 Menalto Ave., Menlo Park CA 94025. See also their magazine $\frac{\mathrm{PCC}}{\mathrm{PIATO}}$ as well as ames, a simulation and Gaming News.) PLATO games, a somewhat different subspecies, ar discussed on 9. DM27.

The underground computer magazines have beand successful (see box). Albrecht's sprightly high and grade pCC, originaliy oriented towar hobbyism as well. On the hardware side there is The Computer Hobbyist, and now a slick new hobby on the educational side there is a swell new magazine called Creative computing.
The basic there is the community Memory movement Tomputer idea of Community Memory is to have a monly avain resource of information and ideas, comtical form the inside the computer, where information can be struction or tha profit motive. struction or tha profit motive.
besides the author, but it attracts a variety of people interested in some form of grass roots revitalization of our society. Some of these are disillusioned sixties radicals who look to "community organization" as a building block for a new society: others are interested in more nuts and-bolts applications, such as trying an urban society with many nonstandard leftovers, skills and wants. (Presumably this would work by having the computer find pairs of people with matching wants and tradables; or even search out potential trades around multi-person rings.)
The first of these systems was Resource One, in San Francisco; 1 saw another Community Memory in Vancouver, which seemed to be in practice a sort of animated classified-ad sybtem. A user sitting at the teminal can put in ads of his own words of interest. As there is no censorship. words rather surprising things get in there, for which I wish we had room.
Communications, is being started by, $\frac{\text { coamunity }}{\text { ee Felsen- }}$ stein, Loving Grace Cybernetics, 1807 Delaware St Berkeley CA 94703.)

Even for those coming anew into the field-the radio hams and amataur telescope makers who ve
laid their Master charge cards on the line for the laid their Raster Charge cart a now social 11 fe . Altair-- computers computer clubs have drawn startling numbers: for instance, the Los Angeles and San Fran cisco groups are currentiy pulling 100 members to theif weekly meetings. (In San Francisco, contact Fred Hoore
Park CA 94025. .)
This book and its surprise success probably rate mention of some sort in the world of under ground computerdom, '74-75; although my underground status may be in establishment, and certainly not expected to bacome assimilated therein so the dozens of university ciass adoptions have come as a considerable ghock, as have the accep-
tance and legitimation i had long since given up tance and legitimation i had long since given up on. My heartfelt thank for this is discussed on p. z, last column.)
p. 2 , bust foiku, this all is the morest boginning. As it gays on diametrically the other side, p. 3, computers belong to all mankind
lot of coples of this book have not been put together correctiy. please check it. Incorrectly-made books will be exchanged.
within two weeks of purchase (addreus on p. 2). Otherwise you have a Collector's Item. CHECKD: \square Dut L you need do 15 Chick tie numbers on the 'Computer lit' side. They run seralght through from cover to cover, even though
the contents flip capriciously. If the letters "DM" appear the contents filp capriciously. If the lettors "DM" app
 for cross-reference.

TRE ALTAIR STORY

It began with a bang last Christmas: the
cover of Popular Electronics showed a conpur cover of Popular Electronice showed 'a computer
you dan bulld yourself for only $\$ 400$ '! It was real. A young firm in Albuquerque
called Micro Instrumentation and Telemetry Systeme, or MITS, had finally done it: a computer for well under $\$ 1000$. In a box not much blgger than a typewriter, a machine comparable to the Univac I. They called it the Altair 8800 . Of course, in a way this was an obvious
step. The MITS computer was aimply the packstep. The MITS computer was aimply the pack-
aging, as a computer, of a specific integrated aging, as a computer, of a specific integrated
circuit chip that had been on the marker for circuit chip that had been on the market for
some months. This chip, the Intel 8080 , is a some months. This chip, the Intel 80a, is
microprocessor, or two-level computer (see p. 44), generally employed for fixed purposea in cash registers, pinball machines, and the like. However, to make it a "general" computer-- with
the engineering, hookups and accessories that the engineering, hookups and accessoriles that
entalled-- would be no small vatter if taken

Next in aomputer hobbyigm will obviously be the Computer Van.
Already vane come with suivel thrones, four-track stereo, color TV; so this next step is obvious. But most important, recreational vehiales aan be purchased on very lone timeplana, somstimes aeven years.
(NITS has a demo van with Al(NITS has a demo van with At-
tair, floppy diak, lineprinter. It drives arourd showing off. But they'tl aell you one like it for a triflin $\$ 29,000$.) How for mobile operation

CHEAP COMPUTERS

A comutar kit based on the kowarole seno,
 countiful, vean ote01O.

 Miport.
jobkitice

CHETP TERMINALS

A thallar kit at a almila
sovinvert Technical Producte.
 ntrs is comitted now to buildaing a video PRice is to ge Agour f1000.
 ulax asory. If you don't and gaxbage on the
icreen.
It ull heve 24 inea of upper-case charec

 Buffer peory uill al wo be dividable fnto dopa-
 Otife tactessories

(Note that this could provide an entiroly
A Selectric interface to the Altatr is in the Altait intarfaces to the pap-8, PDP-11 and
Hova have not yet appaazed. Why not?

DEC's on rloppy diak, for the 8 and 11,
andily
LDucuape, wideh is virtually the ano at
osctape but unpatented, has just come out ot
sivoo for one drive, Including controiler an
intorface to H or wova (interrupt-ariven). Wore that the urit in compert and rugged, and asy
De pore muituble than disk or cairette for those

 Cembridge Menorien, Inc.", clevariy selle
main mory benk for the 11
to which can attach to
 unibus coupler.

ROCTHEDRUMS

trucy amzzag news

The DABLO \& duas

LOcomardy

MINSKY'S COMPUTER atro arierionstely knowh a
MARVIN'S COMPUTER the flung turtie

 compeny that turtie, incorporatod 10,0 topy

THE RILLER CHELONIAN -

250-nanosecond $1 / 0$.
iK of main menmory, 250 nanoescond. (Expand
able. of cour ie.)

Alphabetieal display, standard video. with ex16-10t charactor goneratoz, 64 characterz, DMUHCLLLY ALIzMBL. A1zo expendable. Vectarim graphic dimplay with 2 D rotation "'turtle gecamatry"-- 1ines art apeci- endpointe/sec refresh.

$\because .8$
I asked Dan Hillia, a membar of the group, about
the posilbility of instailing the 2500 in a van. the posibility of instaliing the 2500 In a van

IN THE CHIPS

 cally now etched on chipm the size of your they contain. A fer years ago, tha chipa only contained ding mlocki, 山uch at zeqistars-- units for ing information temporarily. Hut now in eomputers, or large sactions of them. dietinction between microprocessorg and uter is taken up on p, 44,) The firgt biggiea were from Intel: the soos then the 8090 , a chip that has become the t of the Alcaix (gee $p . x$), wisell as rival New computer chlpe keep coning outi people telling pe to mention epecific ones, but I telining we to \#\#ntion epecific ones, but t keep track of thens. The Motorola 6800 populari it will soon be the heart of new uters from MITS and spiepe (bee p. Wind y). augmented and faster copy of the 5800 is rediy being sold by mos Technology tor \$20.) oprocesior from National semiconductor, with working regiacerg and a ten-word goteh working regiaterg and a ten-word stack; 16 K memory it conty $\$ 500$. TThe pace in an in an autcoutic drink mixor and boore Jomp, Calif. Adjuata pricas to hours and eren water the drinks precisely. clatind ake absantes ownerthip of baris practical.) Because of chipis, the price of computer m ry it collapaing apact price of computer ar a word in the gixties, it if something a dine word now. but intel now offerg e ago ship holding $16 x$ bite for $\$ 55$. Which ie bit, and a friend of mine ostimates that ry chips will coet $1 / 10$ of a cent per word i - these zapplar chipi hold lot for a little 1 la eez-punched tape coman along, diak and etic cape will be very much vith us an long- and asckup torage devices. becauge of the actien in chip technology, tentlal limportant movemont in computer doelgn have beon pasied overi the macromodul deui. dealmoclates of the original bec modules. The basic idata of the escromodule approech coly interpluggabla. With them you can bulld The syatem oxiwts, now and it worke juat Unforturately, the cost in high and they n't tound a manufacturez. With chip prices tify charging ten or so timat as much for in the macromodule aysten in buile on wec- of thelva pikg.) Fox this reanon the st . folk are biving trouble getting comercial \qquad \square Mould Mnd $p r$ ght hu line 50 resumbly

EQUIPMENT PAGE
WUERy Nily SEXY conputers

an. -

THE AMSAHL COMPOTER

 Sity.

Octopusser

THE GEENSUTT MACHINE

为

THE CRAY COMPUTER

cray- 1 , anoth tion thore.

AUDIO TRANSDOUCHER

GRPHHICSPAGE

The halifone syatem of inumpo, rumored on
p. De3, is resi. Clevar indeed: it divideat the
half-tone prablema into two parta, one the or half-tone probiea tnto two partn, one the or ig-
inal picturing of the acene, the othar its prexentation in the torminal. That means that thei
eyntem permite one central image generator to syatem permite one central image generator to
send out pliture to as many terminals as de-
ired. Unilike the watkint Box (see p. DM37). whose half-million-dollar opulence can bo poure only on a single ugex at once, in thile ayatoma
the entral reeourca can be dintributed anong
variout usara, with oach one's piture chang varlous usare, with asch one's picture changed
intarnittently, or poured on a single urer for internittently, or poured on annle user for
full animation. transmiteting encoded picturea to the unusual to
minalk required tbutit around Trintrons). But speclal central procasmor le foreseen.
The syites it callid crance, and Ron Swallow. The systes i" called charas, and Ron Swallo
ton developer, in inded ohard charger. (Soft-
ware: bill Underhilit and Roger Gunwaldeen.) Swaliov' \% game Inn't novien or engineering gra-
phics; he wanta CHarce to compete head-to-head phics: he wante CHARGE to compete head-to-hosd
with PLATO (nee pp. DM26-7). And at the prices

Video Dists, Syposedl) TURN, TURN, TURN

 Since the forties, there have been continualannouncements that video digks-- movier you play
on your TV off a yecord-- were right around the on your TV oft a record- were right around the
corner. Eari iar this year they were supposedly
going to be availahle before Christher goinh to be available before Christunaz. Now they
night be on ale, "on a limited basis," in 1976 . 1TV Guide, 16 aug 75 , p. 7.) Because of the qrave
difficulties of engineering-. Inacuracias in punching the center hole mean the track can't help
being off center, for instancer- scae of uit are xeptical
Too systems have been conflidentiy announced.
Philips, the firm that gave us the audio cassecte. has a yystera that will follow the apiral track on the disk froa underneath with a laser. The disk
turns at 30 revolutiona per second, or one turn turns at 30 revolutiona per second, or one turn
per 7 frame, so it can supposediy freeze on one
frame when deeired. The other syatem is from RCA, which has least two of them made it big (the 45 record and
the colior TV syatem now usod in the USA), RO RCA systen will

 whaly look for haden vires.
hitched up with philips and printed a catalog of oll the movies they will mupposedly make avallable
 probably just a bluff: with the prite of audio
records what they are, no way 1 a a movio going to frobably the purpose. 1

MOHES FROM YOURCOMOTER

f. ©h3el prospect surprised then, but MAGI isse movies on their over-the-phone movie-waking sotup (aketched on p. Dw36). Price to capable outders, if the software menhed, would be about sso an hour. (Six hours makes one minute of film , not counting the phone bill. chasp if you know sovie economice.) Meanwhile, John Lowry, at digital video Lat oratorios in Toronta, has been developing highquality video suitable for traniffer to theatrical film. Ho and they have dovaloped a $655-1$ ine film. He and they have devoloped a $655-1$ ine color myetem- with heavy digital enhancement leoe "Picture Procase ing," P . Dw10). I Icarcely believe my notea, but 1 naw $1 t$, and urote dow quality video-- may be upon us coon. 18 . fila $0 \rightarrow-1-\infty$
any hue in namozeconde. we all nated for color mo what happoned to it?

 and Wein, "Coaputar Genarated Key-Frane Anima-
tiont" I. SAPTE, March 71, 149-53.)

What about the animated ilgure that talke to
 the guy who soes the votce works the mouth

Many unlikely individuale have stormed that hoart trreak town of Hollywood, iearuing sadder but Wiser- but Ivar Suther tand, dean of oomputar
graphics?
makers are not, having fownd that the moviographics? Woil, having fownd that the movie-
makers are not ready for image synthegie- the
treanemiths urpereared, as it were, for the Tot treanemit the urpreparaed, as it were, for the Total
Forge- he it eofouming at the Rand Corporation.

Want a computer-controlled videcassette recorder? The model to ask for is the Sony
conting (gasp) ome six thousand bucka. An in
tertace to the pop-11 is made by cux syaters, 635 Vaqueroa, Ave., Sunnyvale CA 94086 . Incidentally, scaled-down COX edsting setups are beginning to get around. For instance, they
have a mail getup in the pleasant offices of DJM Pilm 5 Tape, 4 East 46, NYC: three of the above
Sonys and the Cax Model 50 control setup, uning Sonye and the cax Model 50 control setup. ubing
a ppp-11 and keyeope. Though prices are by the
job, the basic charge is $\$ 75$ /hour. inote that Job, the basic charge is $575 /$ hour. © iNote that
the big cMx setup, with a dink, is the model 300 .

BIT MAPS

slack-And-miltz

An of t-the-gheif bit-map ayntem for the
POP-11 or the Nova it availabie trom Intermedia
 95014 ($\$ 2750$ or $\$ 2500$ reapectively). May be
ganged for gray-scale or color. It' $=256 \times 256$. (see p. Y) will have 120×120 or 240×240 bit-map graphics, for prices otarting around $\$ 1000$. wowk

Extra bit maps, Plus electrontcs, can get you
color: if you double the number of bits you can double the number of available colors on your dia play, ad Infinitum
be available for thide, 64×56 color whe shortiy be avallable for the Altalr from the Digltal Group
Denver. A 128×128 coloz bit-map syatem for the il has just been announced by DEC (for "nuclear medl-
cine" of all thingz-- but they will part with it cine" of all things-- but they will part uith it
to anybody for 8 or 10 thousand (not yot fixed)) iney streas that this will be the firnt of a mod
lar sories of bit-map displays, with plugins for different degraes of remolution and different character generators
rysteas. priced in the both make 256×256 bit-asp Above this resolution mpecial TV bystems tend to be necessary. Both Ramtek and comtal wake very expensive gystems for the purpose,
noild-state and disk respectively

You may or may not have heard of the Advent
projector, the most giorious tv thing there is. TV projector, the most glorious tv thing there is.
It conts 53500 and projecta a four-foot picture in It costs 53500 and projecta a four-foot pleture in
the best TV color you can find. A lot of guys are bit-mappiny to it.
At MIT they've got bit-map color on the advent at better than 400x500 resolution. (An pption planned for the Flying Turtle (see p. Y) will al-
low its core menory to be used with the Advent as a bit-map display refrether.) At comeal they're going for 1000×1000 on the Advent, rejiggerimg the electronies from secrsteh.
The most opectacular demonstration of bit-map
color so far has no doubt been the film done by color so far has no doubt been the film done by
Dick Shoup et al. at Xerox PARC (see p. K), showDick houp et al. at Xerox ark isee p. Nh, show-
ing the wuper animation that's possible when big-
computer resources are given over to bit-rap andmation Their syatem in 600×800

VeCTOR DISPLAYS

At the high end of things, a firm called Three Rivers coaspany has come in with a 30 vec-
toring system (competitors aiscussed p. DM30). supposedly they can pack a lot more lines on the screen. The price of the Gr40 display (see p. DM21), which all that has juat droppene best displays on guize this price drop, DEC gives you the smaller And at the low ond, a firm called Megatek in San Dlego offers line-drawing CRT controller
for $\$ 1000$ to $\$ 3000$. All parnit antination You tor $\$ 1000$ to $\$ 3000$. All pernit andmation. You
have to supply the oscilloscoge. Their equipaent plugs into the PDP-11 or the Nova, or in one
case connects in tandem to an AsciI time-sharin The 11 and Nova models work directly from the device's buffer memory. The time-charing
model converta incoming line lists from Ascil tol binary and stores them internally. 256 lines to with e-bit resolution cost $\$ 1900, \quad \$ 1100$ and $\$ 1600$
for 11 , Nova and t-6 respectively; 1024 ilines for 11 , Nova and t-s respectively; 1024 ines
with $10-\mathrm{blt}$ resolution cost $\$ 2800, \$ 2000$ and
$\$ 2500$ respectively. (Nova and 11 modola can completely updated in wova refresh mycies, yiedding as much animation as anyone can decently
expect for the price. Software is zupplied to provide display output frow Nova, pop-11 or timeMeanwhile, tor the hands-on electronics guy optical Electronics, Inc. makes all kinds of ro-
tation mocules. You can build your own 30 rotat tion setup out of their modules for a couple of thousand, but, of course, the fancy dightale ito
for high-speed refreshenent is not available, for high-speed refreshasent is not available.
An interesting capability of the OEI An interesting capability of the OEI equipent
though, 15 that you can build $\frac{\text { sD- or oven } 5 D-}{}$
gotation syatems out of their modules. Fmaxiti.

Plato nas

TUTOR language are now available frome cerm. Uni Yarsity of Inlinofa, Urbana.
The next generation of plato torminals is coming down the line. The microfiche projector is withering away. as was assily forewotable highi-performance terminal, by putting a computer in it. Thin is being done both by Jack Stifle. hohe hat done it with the Intel chip, and Roger
shimon, who has the panel interfaced to an 11 . onn fans ploneo note the implication: it is po
aible that the interface may be marketed.)

 that these have standard non-plamo interfaco 433 .

Yave sig dispay parkes

All those scoreboards and wisecracking 11 gig
grids, now that they are computer-controlled. raise all kinds of possibilities for non-frame nimation. The big ones cost in the millions; mall one for shopplng centerz costs a hundred rand (Militenilum Info Systoms, Santa Clara CA).
Within a year or so, though, you ought to same sort for the side of your van, assuming

A surprise something-or-other from DEC, the
VT55, represents a breakthrough of some most. Bu what wore they thinking of? "Graphic capability" has been added to an ordinary upper-case keyscope. Specifically, the
ability to make two graphe, i.e. twa wlogly 1 ine
(no more) somawhese between the left and right (no more) momewhexe between the left and right
sides of the screen. You can also shade in under sides of the screen. You can also siade
chem, and sdd coordinate griss. it is $\$ 2500$, and
obvioualy great if you're bonkers for $2 D$ graphs.

Guess WHOS comine ros ynake mont, fo mponsoring a slao.000 charge installation
at the University of waterico, in canada.
w,RE thanrs

 Who hay changod that pabiongec
tion frome etolld to peppory
 patent attorney and etill
ex-philosophy profestor at
hoort, for meny delightul witey conver sations on problem
of petent. copyright and the of petant, copyright and the
vigarian of intaliectuan proporcty. Any hartablictined 1 prop-
these topic: expresed hare, on however,
my wm
tion in this much
grateful this nupplement cinally. epracial thanke better known to you houl tuxp.
Book Survice, for his yogen performance in ohipping yout rying them no and donn ztaira typling the mailing labels. checking for bod onas, and
sending fout all those notes of bookg again and again and agas And to long-aufforing ziols and
negan kecauley, my gispecial Megan kecauley, my especial
graritude.

MHATEVER

The soa-to-shining-sea
 thif and stecond pair of shoes
my scheme for taking on Appranelice Generaliste may have to Lib, the filim. But just wait. Speaking of which, what
about this book, hey, now?
Eventually there will be a new edition. Yes, the type
is horrendousiy shall, and the is horrendousiy siall, and that
ill have to bo fixed. But
that involves new negatives for every page, an expendture of
thousands of dollars, and acen reconsideration of how this There have been several plit the contents of this book Into thret books, add material

 of a 370 holding Paty front peanel ting out a 10 -valume encyciobracing psychology/sociology, biology/ evolutionary strategy history (as strategy)/more
tozy (as mood and feelting) (a two-sided position paper) the Gesmanniscal Encycloperia a im.
But reason has prevalled, and such forays have been pontponed

$\frac{\text { Computer }}{\text { and reset }} \frac{\text { Lib }}{1 n}$ to be rewritten

 1 least 256 pages, with at leat8 color pages and col (We're talking about fall 76
or later.) Price will have to be sis. If you think that'in a
ripoff you can still get this complained to me about the $\frac{\$ 7}{7}$ price tag of this volume. Hav
they ever bought other booka?) Later I would like to put out
an anthology of my favorite a Computers Arise! Acomputery In acone good 30 if possible
In anye, I want to stay in in
the publishing game; I haven' had so wuch fun in yeares oth-
er projected volumes inciude

 computer, and posibibly to she This has been a most in-
teresting year. I have been plessed to neet, and otherwise
enjoy. the variecy of clever, enjoy, the varlecy of crover,
charming and/or lubt icus per-
tona who have nought ge out a ince the book first appeared as vell to all the speaxing onrelovant materighted to recoiva cations of any kind, although
problems of time, disorgeniza
tion and mood often preclude It has bean a real lift for ideas and onthusiamane with the you, finally, who have to care, AE to the mont important
matcers, the re in now black-
out for the indefinite fute
pleege put for the

the Agericon Chenical Society, the American Docuaterition inerituct, tho Anertcan Kanngenent Absoriet, the censral tnselitigence Agency, the clation for giectrical and Eleceronien Enginesta, the Printing and Pubitiming Anooclation, the amd corporation, the society for inforgation Diaplay, the society of Motion picture and Televiaion Engine* time incorporated, tinion theolopicai seminary (the Auburn lectures), (

acknonledgments

Everybody at Chicago Circle Campus an grateful not only for the oncourageaent and assistance of various individual (especially Joseph 1 Lipson, David C.
Milier and Samuef schrae), but for the
atmosphere of support which has made thi atmosphere of support which has made thi Art and the office of or freeing me frow
sources Devolopment forming duties, to the Conputer Center
teaching nd the Department of Chemistry for let ting me use pictures of their equipment,
ind everybody for their encouragement.

I would like to thank the Walt Disne organization for their permisslon to de
pict their wonderful characters, and ev eryone else who furnished materials
permissions for the things herein.

Thanks also to those who looked over owe of the material, especially Herbert Grosch of Computerworld, Dan McGurk of
the Computer 1 ndustry Association, and HLHIAam Rodgers.
1 am particularly grateful to the many who have explained computers to ne
over the years ospecially Dave Denniston
Robert Fonichei. Andrew. J. Singer, John Robert Feni
R. Levine.
my thanks to Tom Barnard for some of
early typing, and for the porta-Xan. I an grateful to Computer Decisions
againe for their goodwill and help in researching computcr imago synthesis. My romnate Tom DeFanti, mentioned erate beyond the call of duty in giving over all the first-floor rooms of our
house to this project for six months.

My thanks finally to the many others whose good wil has kept me going, in
particular wy former wife and oternal
friend, Deborah Stone Nelson.

Special greetings to ny friend and
hbor, Mrs. John R. Neill: 1 hope you enjoy the uses which your husband's illustrations of

Lastly, for her conrubutions to morale (and for not footprinting the
pasteups), iet's have a warn hand for
Pooky the Wonder Dog.

He ach hat Mustraliono are all by John R. Nelll, from various out-of-copyright O_{2} books by L. Frank Baum, especillly $\frac{\text { Ozma }}{}$ of $\frac{\mathrm{O}_{2}}{\mathrm{O}}$
and Tik-Tok of Oz . Tik-Tok. the Machine $\frac{1}{\mathrm{M}} \frac{\mathrm{l}}{\mathrm{n}}$ and Tik-Tok ol $\frac{\mathrm{Oz} \text {. Tik-Tok. the Machine Man }}{\text { is }}$ nificance is attached here by juxtapostition.

The Oz picture in this soresd is from The Patchwork Git! of \underline{O}_{2}
hought you might wonder
out the door in ' 74

 Ae to the last aspect, that of caking ay case to the public butomoblie revievi in mechanix illustrated tiy bou he thoughe we ahould vin world War if.

 ... with a littile help prom hy priehds

The and thing sbout it all it that 902 of chese afforta are unnecesary. A decent computer text

ARE WE MAREPLIStic?

Persons of asagacity have been saying for some the that we are matorialistic

In an important serise this is not mo.
The machines. and toys, and involvemento we buy into, are in but a small proportion of as consumption aymbols.

Rather, we buy things that REPRESENT 10EALS, hoping ourselvea to partake of some
sbutraction or image - the Playboy man, the Smart Buaineasman, the Clever Homemaker.

Each product tries to tell us it is the key stone of a way of life. and then, at least at thai moment of purchase. We step into, we embrace
that way of ulfe, covering ourselvea with the feeling, the aura, the magic we saw in the con mercial.

Thir in not materialiam. It ta wishful grasping at miasma. (Following sentence opsimply the Objective Correlative of a hoped-for tranmabstantiation. (Sorry.) It's a seeking. not to possess, ${ }^{\text {r }}$, to belong

Gucty AMERCAN MACHWE-DREAMEPS
D. W. GRIFFITH-- took the movic-box and created the photoplay, no longer a twisted stage

WALT DISNEY-- created a hypnotic pantheon of kindly and innocent semi-animals. senti-

JOHN W. CAMPBELL-- as author and then edito of Astounding, turned American sciencefiction from the Buck Rogers space opera to the human story, built around thought out premises and atr
IVAN SUTHERLAND-- programmed and systematized a computer setup for helping people thin)
and work with deeply-structured pletoria information. (See p.ghiz.)
DOUG ENGELBART-- foresaw the use of computer screens as a way of expanding the mind.
and over the last decade and a half has brought about just that.

And more, and on.

another quichie
Compare Alice, when she gets to Wondertand with "Deary me! Curioser and curioser!" ("How Gale, transported to Oz
 american git-out-n-do-it

APPARATUSES
 OF APPARITION

It anema different companies are all the time introducing wonderful new devices that will revolutionize. uh, whatever information and atuff. Things you'll attach to your TV to get highbrow programs or dirty movies Microfilm devices that will shrink the contents of the Vatican Library to dot on your glasses. Coggles that show you holographic color movies. A pince-nez that lets you see the future. And so on.

Reading Popular Mechanics or the Saturday review of patents in the New York Times, you fot the idea of Something Big. New and Wonder hul About to Happen, so we'll all have access to anything, anytime, anywhere

But it's been that way for decades. and with certain exceptions hasn't happened yet.

Here are some things that have caught on. and are mostly famillar to us all

Book. Newspaper. Magazine. Radio (AM). Phonograph record (78). Tape recorder, $\frac{i^{7}}{}$. Black-and-white television. Radio (FM). Phonograph record (33). Phonograph record (45) Color television. Tape cartridge ($t^{\prime \prime}$). Tape cassette (Phillps, ca. $1 / 8^{"}$). Stereo records and tapes. Oh yeah, and movies: $35 \mathrm{~mm}, 16 \mathrm{~mm}$, 8mm, Super 8 mm . Carousel projectors. Viewmaster stereo viewers.

Here are some things in the process of catching on (and not assured of success) Quadrophonic sound. Dolby. Chromium dioxide tape emulsion. Super 16 movie format.

But for everything that did catch on, dozens didn't. Some examples: 12 -inch 45 rpm records. 11.5 millimeter movies. RCA's i-inch tape cartridge, which became a mod
Philips. Wire recorders.

Then there are the things that caught on for awhile and went away. Stereopticons (and I loved as a kid). Cylindrical recordings. Piano rolls. And so on.

Then there are the video recording systems. CBS' EVR died before it got anywhere. RCA's SelectaVision isn't out yet. 2-inch quad is standard in the studios, -inch Porta-Pak is standard among the Video Freaks, and it looks sales and storage medium. (The philips system sales and storage medium. (The Philips system is dubious.) But what's this we hear about video disks (twenty-five years after they announ ced Phonevision. Ah, well.)?

The thing is, so many of these things seem to sound alike. They all mention "information retrieval," education, technology, possibly "the information explosion" and "the knowledge industry." Press releases or effusive newspape articles may use phrases like "space-age," futuristic," "McLuhanesque" or even "Orwellian" (though few people who use that word seem to know what Orwell stood for: see $p, 59$.

And the intimidating company names! outfits with names like General Learning, Inc. or Synergistic Cybernetics, Inc., or even Surely such people must know what they ar doing, to use such scientific-sounding phrases as these!

Then there are the business magazines. in the late sixties they were talking about "The Knowledge industry" (a fiction, it turned out. of an economist's lumping a lot of things together oddly). Now they talk about the Cable TV outfits and the Video Cartridge outfits as though they're the cat's pajamas.

Emblem of 2 I International Animation Film Featival
in Now York, Jan 74. © Walt Dianey Productiona.

THERE'S SNOW BUSINESS LIKE SHOW BUSINESS -
You Can't Tell the Experts without They Program You

BHEEL'S IN TOY'KND

Guy's Background	Toll-Tale Phrases 4 Jargumentation
Television:	"Media" (meaning televiai
1. Video freaks	"Software" (meaning videotapes).
2. Network People	"Programming" (meaning competitive acheduling); "Software" (meaning fixed-length TV shows).
3. Cable Operators	Head end, upstream downstream, back-channel. "interactive TV" (meaning any form of interactive computer system they can get in on).
Math/Engineering	Information theory, channel capacity, bendwidth. feedback, anything complex and irrelevant.
Display Engineering	Full duplex, echoplex, aspect ratio, scroll, cursor; "information transfer" (meaning telling or teaching); "date delivery" (act thereof).
Programmed Instruction, Computer-Assisted Instruction	"Software" (meaning sequential or branching tell-ktest materials); "Programming" (creating these); reinforcement schedules (meaning presentational order); "inputs" (meaning ideas and information); "feedbeck" (meaning replies); "simulations" (meaning pictures or events a user can influence)
Publishing	"Software" (meaning books).
Advertising. Public Relations. Marketing	" "Demographics" (meaning factions); campaign strategy (meaning how you hit a market); "penetration" (meaning extent to which your stuff catehes on); "Programming" (meaning anything whatever).
Artificial Intelligence	Anything mathematical; theorems, discriminators, neural nets: "programming" (meaning setting up anything very complicated and incomprehensible).
McLuhanatic	Global Village, mosaic, surround; "Programming" (meaning psychological indoctrination): anybody else's terms, dynamically infused with new senses.
Nelsonian	Medium (meaning stabilized presentational context); Writing and Creation (meaning thoughtful production of something presentable, whether sequential or not. in a medium): "Programming" (meaning giving exact instructions to a computer): media integrity. inventions $\&$ conventions; hypertext, thinkertoy, fantic

Having spent some considerable time around and among these areas, I have developed consid Originally it all seemed to fit together and to be leading somewhere, but talking to people at all levels, and either giving advice or trying to interpret the advice of others, I am convinced that what we have here in this whole audio-visual-presentational whizbang field is nothing less than a very high order of collective insanity. The strange way companies adopt and drop various product lines, and verbalize what they think they are doing, seem to me a combination of lemmingism and a willingness to follow any Authority in an expensive suit. I have talked to enough vice-presidents and presidents of computer companies, publishing companies, networks, media outfits and so on, to be totally certain that they have no special knowledge or unusual basis of information; yet these people's remarks as amplified through the business reporters. send the whole nation a-dithering. There are times I think everybody in Media is either deluded, misguided. lying or crazy
three cruclal points.

1. SYSTEMS "IN THE hOME."

The emphasis has changed from trying to sell snazzy systems to the schools (which don't have the money) to the home. This in turn has convinced most people that the new systems has convinced most people that the new systems
have to be very limited, like jimmied-up TV sets (We easily lose track of the fact that you can have anything "in the home" if you want to pay for it; and an economy in which Marantzes and snowmobiles have caught on big indicates that some people are going to be willing to pay for really hot stuff.)
2. CATCHING ON.

The key question is not how good a system is in the abstract, but whether it will catch
(Obviously if we're public-spirited we
want
the best systems to catch on, of course.)

This matter of Catching On is a fickle and crucial business.

According to one anecdote, Mr. Bell couldn't interest anyone in his invention, which he was showing at some trade fair. Then who should come by but the Emperor of Brazil (!). who was about to leave with his retinue of ad Brazil. "Nothing to bother with" Emperor of tried to rush him by but he stopped and loved it, and ordered the first puir of telephene loved This made the headines and the sale of tel phones begar.

Another anecdote. It is legendary that inventors overvalue their own work. Yet after Thomas Edison had invented the kinematograph. or "moving picture," a device you looked into turning a crank, he declined to build a projector for it, saying that the novelty would wear off. would mean here.

WHERE ARE THE SHOWS OF YESTERYEAR?

once read a mind-blowing review article in Films in Review. early sixties I think. on schemes to make three-dimensional movies before 1930 . There were dozens
Then there was that multiscreen film Napoleon -- a legend-- done in the nineteen-twenties (That one really existed.)

Phonevision, about 1947 or so, was going to store half-hour movie on a 12 -inch disk. Did they get the idea from the LP? Did they really think they could do it?

The German photo-gizmo, around 1950: a special camera that supposedly created a sculpture
of what it was pointed at. (But how did of what it was pointed at. (But how
it know what was behind things?)

A weird lens around 1950-- ई think it was depicted as having a blue center and a red periphery, like a fifties hoodlum tail-light-that was somehow going to find "residual
traces" of color in black-and-white pictures, and make 'em into color, zowie, just by copying them

Then there was the Panacolor Cartridge. During the Days of Madness-- 1968, I think it was -- a rather good little movie gadget was being pushed bil arie and pudio track. it helicve on a 70 mm strip. The prototype I bere buit by Zeiss.

Their idea was that this was a compact movie projector. I kept trying to persuade the company's president that they had inadvertently designed a splendid device for branch

Exercise for the reader: map out prop-
erties of the branching and expository structures implicit in such a device. at's one-directional. Gotte rewind when you get to the end. But you can jump between racks when it seems appropriate.)

The Gract Robart Crumb
(From Zap Comix 0.1

"In the news*
 there is notrotht **;
 and in the truth $+*$,
 there is no news*."

- Modera Rossian proverb.

* Izvestia.
 **Pravda.

HARDWARE, SOFTWARE AND WHATNOT (reprise)
Among the many odd things that have resulted from the collision of computer people with educators, publishers and others has been the respectful imitation of computer ways by those who didn't quite understand them. Again the eargo cult.*

The most dismal of these practices has been the adoption of the term "software" for any intelectual or artistic property."* This wholly loses the distinction, made on the other side of the book, between:
hardware (programmable equipment)
software (programs, detailed plans of operation that the hardware carries out)
contente or data (material which is presented by the hardware under control of the software

In other words, hardware and software together make an environment; data or contents move and appear in that environment.

The publishing-and-picturefolk have missed this distinction entirely. Not realizing that their productions are the contents (material, matter data, stuff, message...) that come and go in the they have mushed this together into anments self-feeding confusion.
(The matter has not been helped by the computer-assisted instruction people-- see p. DM 15 -- whose branching productions seemed to them enough like computer programs to be called "goftware.")

- Primitives exposed to "civilized" man imitat his ways ridiculously in religious rituals hoping for the shipments of canned goods, etc. that his behavior seems to bring down from parts unknown

ON
 EX-SPURE-TEASE

* "Mere corroborative detail to enhance an otherwise uninteresting narrative..

Pooh-Bah,
Lord High
Elese
3. Standardization

In order for something to Catch On, it hae oo be standardized. Unfortunatoly, there is mo tivation for different companies to make their own little changes in order to restrict users to its own products. The best example of how to
avoid this: Philips patented its audio cartridg avoid this: Philips patented its audio cartridge to the teeth, but then granted everybody (ree use of the patent provided they adhered to the exact standardization. The result has been the system's spectacular success, and Philips, rather than dominating a small market, has a share of Car larger market, and hence makes more
money. That's a virtue-rewarded kind of story

The other problem with standardization, though, is that we tend to standardize too soon. We standardized on AM radio, even though FM Armstrong, a great figure in the development of radio, committed suicide when nobody would accept FM. If he could only have heard our FM of todsy, he might have said "Oh, nuta," and lived.)

Another example. When they designed the Touch-Tone phone pad, the Bell people evidently aw no reason to have it match the adding marather than the lower left. Now there are lots of people who use both arrangements, every day, and at least one of them curses the designers' lack of consideration.

Another interesting example of Catching on: during the early sixties, it was fun being at places where they were just getting Xerox copiers for the first time. Everyone would argue that nobody needed a copier. Then, grudgingly. one would be ordered. The first month's use invariably would exceed the estimate for the first year, and go up and up from there

The worst aspect of the confusion among the corporations is that certain deficiencies an crudities of vision slip into the mix. Unless our new media and their exact ramifications and concomitants are planned with the greatest care verybody stands to lose. We must understand the detailed properties of media. (The frst ques o ask, when somebody is showing you th Latest and Greatest, is: "What are the properties and qualities of the medium?" The followup questions come easily with experience: How of en do you have to change it, what are the bran ching options, what part could somebody accidentally put in backwards, are there distracting complications? etc.)

I am unpersuaded by McLuhan. His insights are remarkable, yet suspicious: he supposes that electronic media are all the same. How

 ay, is one of the most important we have to face.

The engineers seem to be quite the opposite of McLuhan: somehow to them it's always a multiple-choice, multi-engineering problem. diferent every time; "this technique is good for A, that technique is good for B." But the net effect is the same: "electronic media are generally the same." I would claim that the're all different, all ten million of them (TV being only one lectronic medium out of the lot), and the differences matter very very much, and only a few can catch on. So it matters very much which. Some are great, some are lousy, some are subtly bad, having a locked-in information structure, built deep-down into the system. (Example: the fixed "query modes" built into some systems.)

One lest point. Everybody only has a 4-hour day. Most people, if they increase consumption of one medium (iike magazines or books wil cut down on another (like TV). This drasically reduces the sorts of growth some people have been expecting. Except, now, if we can begin to replace some of the inane paper-shuffing and paper-losing of the business world, and replace the creepy activities of the school (as now generally constituted) with a more golden use of time and mind. Read on

THANHTOPSSS

A self-employed repairman of mobile homes amed Donald Wells has invented a solar-powered arced, along with appropriate orget ausic and any last words or eulogies aelected by the deceased.

The device is activated by a remote contro evice carried by a visitor to the gravesite保
"You could also have pictures of Christ asconding to heaven or Christ on the cross, whateve you want," says Wells. "It adds a whole, new dimension to going to the cemetery...."

Last year actually heard a phone company lecturer say that in the future we will have "Instant Access to Anything. Anytime, Anywhere.
 What they're pushing is Pleturephone, which it seems to me is unnecessary, wasteful and generally unteaslble
 See: Robert J. Robinson, "Pleturephone-- Wh Needs It?", Datamation 15 Nov 71, 152.)

ON USING MEDIA

In any medium-- written, visual, filmi an atmosphere, a patina, a miasma of style n atmosphere, a patina, a miasma of style,
nvolvement, personality (perhap implicit) outlook, portent. Consider--

The complacency of the Sulzbergers'
The $\frac{\text { New }}{\text { cynicism }}$ Tineg--
The perkiness and sense of freedom of
"Sesame Street"--
The personalized, focussed foreboding of orson Welles films: as distinct from the impersonalized, focussed foreboding of Hitcheock--
Next to this matter of mood, all else pales: the actual constraints and structures of media, cognitive works and presentations within media. are as nothing.

"MEDIF" IN THE CLASSROOM

Time after time, the educational establishment has thought some great revolution would come through getting new kinds of equipment into the classroom.

First it was movies. More recently it's been audiovisual stuff, teachi

In no cases have the enthusiasts for these systed een how the equipment would fit into conventional edu-cation-- or, more likely, screw the teacher up. Teacher are embarrassed and fluskered when they have with modipment in addition to everything else, and fitting the available canned materials into their lesson plans doesn't work out well, either.

The only real possibilities for change lie in systems that will change the instructor's position from a manager a helper. Many teachers will like this, many will not.

PAY CAREFUL ATTENTION

when somebody shows you an electronic or other presentational system, device or whatever.

A certain kind of slight-of-hand goes on It's very easy to get fooled. They may show you one thing and persuade you you've seen another.

And if you're canny enough to ask abou
a feature you haven't seen they'll always say,
"WE'RE WORKING ON IT.
It's only dishonest if they say, "It'll be ready next month."
 syates, which now basically consists of the manipulation of rubber puppete by minicomputer, through cables and puffy of air (c) Walt Dinnay Productions.

VIDEO. The happ nediom? some mitervers

would you believe there was taleviaion broadcasting
the airwaves in the ninetean-twentios? The thing is, over the
it used bizarre spinning equipment bocause there were n
on CRTs (see "Lightning in a Bottle," nearby.) oniy ith the developmaticable Cathode Ray Tube, making home teloviaion feasible.

But the big companten were at firat very conaervative in their marketing, figuring television would, who caricatured himelif in a Napoleon hat, to see that allliona would buy television if the price was right, So he came out uit Muntz TV in the late forties. Aos. recals, whe leas intimi-
 don't know how Muntz came out on it all, but his opening of the masi, market made the bigger corporation reslize it wa there. (This same thing may yet happen again in newer media.)

Originally all there was was Rrazy Kat and farmex Hrown cartoona. But behold, sooner chan you could say on the Admiral Show, and we were off.

A quarter of a century later, the best of televiaion is no better and
as it aver vas.

We "underatand" televiaion. That is, we know what TV ahow 1s, how it fite together and so on.
icecubes
But what people don't realize about TV is that the overning feature is the time-alot in any wediua
ime-slots, whether TV, radio
or clasmaom education, the time-slot rules behavior. Whatever can happen is as constratined as leccubes in a tray

This is the limiting factor when optimists try to use TV for teaching. If it's coming over a cable, everycilpped and constrained to fit the ifme-slot. It may be better with videotape.
cables
In the last dozen years, Cable TV, or CATV, has becoae big bualneas. A Video Cable is a high-capacity
electrical carrier that runs through a given neighborhood or region. Business and individuals may "subcribe" and get their oum sets hooked onto the cable.

What this does first of all is improve reception. objects as the Horld Trade Center in New York can be corrected by hooking into the video cable: you get a nice, sharp picture.

In addition, though, the cable offers extra channels
Now, the businessmen who have been throwing together these video cable ourfits are aiming for something. net them a lot of money: by showing things on them that can't be offered on the alr- highbrow drama, or perhaps
x-rated stuff-- they could get extra revenue. (You'd pay extra to watch it by buying an unscrambler, or whatever.)

This is curning into somewhat of a disappointwent.
The cable people had foreseen, evidently, that people would stay hote in droves to see the new offerings on the everybody has only twentyfour hours in a day, and far less than 24 hours to dispose of freely; so every leisure occupation is competing with every pther leisure occupacion. Moreover, the residual leisure occupation, when there's no
thing else to $\frac{\text { do, } 1 s ~ T V . ~ I t ~ w o u l d ~ g e e m ~ t h a t ~ f e w ~ p e o p l e ~}{l}$ thing else to do, is TV. It would seem that few people would wateh $\frac{1 \text { ess }}{}$ if they could afford to go out.

Extra channels

In recent years, a number of extra channels have been ade avallable by lau. These are the UHF, or vitra High Frequency channels. These, like cables, represent a con the problem of organization

Whatever e1se you may say about them, the networks and TV atations are at least organized as going concerns within the institutional structures of the country. Ideas
of "community television" and other such schemes which call of "community television" and other such schemes which cal
for some new form of social organization to spring forth for some new form of social organization to epring forth
are about as plausible as "community control" of schoole and police- or at best likely to be as influential as
interactive tv?
Some people, I won't say who, have gotten a lot of oney for something they call "interactive television." haring that will use home TV terminals and video cables. The questions are thy use hone TV cerminale and video cablea, insofar as they vould seem to promise only comparatively low-grade performance; and whether these people tics of the vartous media they the potential characteris Nothing I have aeen or heard about this is reassuring.
"alternate" television, of video preaks

In recent years, many young folks have taken to video
way of life. In the most extreme cases they say things as a way of ilfe. in the most extratio cases they say things have tound it rather difticult to talk to video treake. IIt may be that mone of them are against repo

The work of thene people is as exuberant an it is strange
haven't seen auch of it or understood much of what inave I hava

In some cases, "alternative television" simply means documentaries outside the normal fremework of ownership and report ing. In one example cited by Shamberg (ree blbliography) ion. Peopia were allowed to speak for themselves, unlike "nor-
" Tv journalism where "cormentators" tell you what they see
Now, this is hardly revolutionary, it is just good documen-ary-making that shucks dumb traditions artistically, much lik
he Pennebaker films. However, video enthusiasts claim it in somehow different, and indeed cialm that video is different in somehow difierent, and inder cialm that ins. I have been unable to get a satiafactory
principle from
clarification of this idea.

Video is being used in other ways, harder to underatand, by rtists (best defined as persons called "artists" within the art world today). very odd "video pleces" have been shown at art shows, where the object seems to be to confuse the viewer-- or knock him into a condition of Enlarged Perspective, shall we say And a variaty of non-objective videotepes are now beling created. - implying sarcastically that it had not been before, on the arwaves.)
some video freaks think of video as intrinsically radical evolutionary. In this respect they frex interestingly from say, the editors of the National Lampoon. gest that the very media of cartion and joke-plece are themselve revolutionary. scme video freaks appear to be persuaded that th medium of television itself is inherently a vehicle for change.
can understand one interesting sense in which this may be true: Shamberg talks about video as a method of gelf-discovery. Seeing yourself on TV does, of course, confer certain insights. But hamberg suggests nay expand people sleansciousness in pursuits the uses the example of shopping), for instance. But If this does hit home to peaple, it doesn't seem to me to be the medium that's doing it but the selected content-- as in all previous media. Maybe I've missed the point in some way.

These developnents are all very interesting. It can be hoped that those trying to develop new forms of conmunication the author, often cannot comprehend what they are doing.

But decentralized transmission of information should be dominant, not fugishould guaranteed as Media-America to the means of distribution of infors tion.
(Shamberg, p. 67)
Well, we went down there with our Porta-Pak and tried to take it inside A guard came over and said we couldn't and even threw one of as out of the booth telling you what to do in a cybernetic telling you wha
(Shamberg. p. 53)
Cybernetic is evidently a code word here for what they think is good, true, beautifull and inevi-
table. Cf. p. DM $1 \geqslant$.)

About the only generalization to be made is that community video will be individual which feels threatened by a coalescing which feels threatened by Because not only does decentralized TV serve as an early warning system, it put common grievances."
biblidgraphy
(Shamberg, p. 57)

Michael Shamberg and Raindance Corporation Guerrilla Television. (Holt, $\$ 4$.) TUEE, an underground TV magazine. $\$ 8 / \mathrm{Yr}$ TuBE, 1826 Spaight St., Madison, WI
53704
Room 607, Chicago, Samples $\$ 1$. "SCANDAL IS RAMPANT in the cable television industry. Only Cable Report follows cable TV developmients from the citizen's perspective and telis you what's happening and what's
going wrong." Ad in Chicago READER.

IF WE HADN'T SMNDARSIZES TV NHEN WE DID, We'd have a bejter system now.
 Let this be a keson: standardice on the bets system,

RADAR DISPLAY uses a CRT to show reflec ted images around where the radar antenna is standing. This uses a scanning raster of a star shape. brightening the beam when reflected images are received.

COMPUTER CRT GRAPHICS generally use the CRT in still another way: the beam is moved around the screen in traight lines from point to point. Between different parts of the picture the beam is darkened, turned very low so you don't see it.)

Because the image on a normal CRT fades quickly, the computer must ordinarily draw the picture again and again and again. (Methods for this are discussed on p. PM 22-3.)

SPECLAL KINDS OF CATHODE-RAY TUBES
The CRT is not merely a single invention, but an entire family of inventions. The ordinary CRT, which we have discussed, is viewed at one and by a human being, has an image which fades quickly, and can have its flying apot driven in any kind of raster or pattern.

Here are some other kinds of CRT:
The picture transmitter, which has different versions and names: Vidicon, Image Orthicon, Plumbicon, ete. THIS IS THE MAGICAL DEVICE that makes the television camera work, AND YET. BY GOSH, IT'S JUST ANOTHER CRT. Except instead of the picture coming into it as an electrical signal and out of it as an optical image, the picture comes into it as an optical image and goes out of it as an electrical signal.

How can this be?
The tube sits inside the television camera, which is an ordinary camera, like, with a lens projecting a picture through a dark chamber onto a sensitive surface. But instead of the surface being a film. the surface is the faceplate of a CRT with some kind of a special pickup phosphor:

TV CAMERA

The electron beam, which is just like any other electron beam, is made to zigzag across the faceplate in a standard television raster. And the special phosphor of the tube measures the brightness of the picture at the spot the beam is hitting pens, but it's chemical and electronical and mysinteracts with the light from one the phosphor electrons from the other side ot side and the Anyhow, me Anyhow, a measurement signal comes out of the faceplate, indicating how bright the projected picture is in the very spot the electron beam is
now hitting.

As the beam criss-crosses the faceplate in the zig-zag television raster, then, a continuously changing output signal from the faceplate shows he brightnesses all across the successive lines of the scan.

And that is the television signal. Together with synchronizing Information, it's what goes out over the airwaves, down your antenna and into your set. Your set, obeying the synchronizing information, brightens and darkens its own beam in proportion to the brightness of the individual teeny regions of the faceplate in the television camera. And this produces the scintillating surface we call television.

σ

The color tube is a weird beast indeed There are several types, but we'll only talk about the simplest (and many think the best), Sony's Trinitron (TM) tube.

This is an ordinary CRT which has, instead of a uniform coating on the faceplate, tiny vertical stripes of three primary colors-- red, blue and green. (You thought the primary colors were red, blue and yellow. didn't you. If you're mixing pigments that happens to be true For some ungodly reason, however, if you're mixing lights, the colors that yield all others minn out to be red, green and blue: it turns out that yellow light can be made out of red and green. If you don't believe me go to a chintzy green. If you don't believe me go to a chintzy
hardware store, get a red and a green bulb, hardware store, get a red and a green bulb,
turn 'em on and see what happens in a whiteturn 'em on an
walled room.)

At any rate, color television uses additional color signals, and in the Trinitron these control the response of the faceplate. If the color signal says "green" as the electron dot crosses a certain part of the screen, the color signal tells the green stripes that they're free to light up when hit. If it's Yellow Time, the signal tells both the red stripes and the green. and so side by side they light up red and green as the beam crosses them. but the total effect from more than a few inches is Yellow.

Most American color TV sets, however, at least up till this year, used something very different, something entirely weird called the Shadow Mask Tube. I'll spare you the picture, but there were several different electron beams -- often referred to jokingly as the "red electron beam," "blue electron beam" and "green electron beam," though of course they were identical in character. These hit a perforated sieve, up near the screen, called the shadow mask, and the color signal tweaked the unwanted beams so they did not hit different-colored phosphor dots that were intricately arranged on the screen. I'm sorry I started to explain this.

Multigun tubes have more than one electron gun and more than one electron beam. They can be used in different ways (aside from th old shadow-mask TV tube, mentioned above).

For instance, one gun can be driven in a video raster, to show television, while another gun can be used as a computer display, drawing individual lines with no regard to the TV pattern.

The storage CRT comes in two flavors: viewable and non-viewable. But what it does is very neat: It holds the picture on the screen. and it's all weird and electronic but the ldes that once something is put on the screen by he electron beam, it stays and stays. several minutes, usually The main . urers are Tektronix. Princeton Electronic Pro ducts, and Hughes Aircraf: each of these three has a product that works by a different method.

Note: Tektronix' tube is built into a number of different computer displays, and is recognizable by its Kelly green surface. They hemselves make complete computer terminal around this scope for $\$ 4000$ and up. but lots of other people put it in their products also. It shows whatever has already been put on the screen, and the electron beam does not have to repeat the action. However, it usually only stays lit for about a minute

Princeton Electronic Products (guess where)

 is a much smaller outfit, so perhaps it is appropriate that they make a much smaller storage tube. It is about one inch square at its storage end, and you don't look at it directly. Instead, an image can be stored on it either wh a TV an image can be stored on it either wh a T raster or by computer-driven line drawing. After the image is stored on it, though, it functions as a TV camera: the picture stored on the plate can be read out with a scanning raster, exactly as if it were a picture transmitter in a television camera. The Princeton folks have built a quite expensive, but quite splendid, complete terminal around this device: it can hold both video and computer-drawn pictures, superimposed or combined, and sends them back out in standard black-and-white TV. \$12000.CRTS which bring in a picture one way (such as a video raster) and send it back out another way (such as by letting a computer search out individual points) are called sean converters.

A word about this last method. It is often desired by computer people to turn a picture into some form of data (see p. 1i). Scan converters, usually by the three manufacturers named above, can be hooked up to let the computer program poke around in the picture and measure the brightness of the picture in arbitrary places A device which examines the brightness of something in arbitrary places is called a flying spot thing in arbitrary places is called a flying spot scanner.) Here are

video picture iself is mesured in a two.ended
storage tube.
1 have heard it said that it might be possible to build a CRT with a changeable mirror surface: that is, the screen becomes mirrored temporarily where it is being hit with the electron beam. Interesting. This would mean that you could make computer displays (and TV) bright und projectable to any degree, say, by pouring a super-intensity laser beam on it. "Be great for writing 'Coca-Cola' on the moon," says a friend of mine. If you believe in astral projection.
3ibliography: Color TV Training Manual, Sams $\&$ Co./

Daplel J. Sandin (fronounced san-DEEN) ha pent the last several years puting cogether a
entice he currenty callo the IP (Tmage Proces wor). It's a aystem of circuita for changing and colorizing TV. What followe is the first published description of $1 t$.

I regret that the following is probably one of the most difficult secitions of this book.

The idea is batically to create a completely generalized system for altering the color and does not move them on the screen. Thus it differs from the Coaputer Image line of videotwlsting graphics systems, which siter positions of objecta; see p. DM 39 . Note elso that rather similar facilities exist as part of, e.g. This means that basically Sandin's system
playa wich the part of the iv aignal called z, or brightness (as diatinct trom x or y, the signalt for horimontal and vertical movenent of the
dot. See papmantorepe).

How, at a physiciat and field-theoretician, Sandin approached this as a problem in generalicy and indeed, the style of generalization should be appreciazed. Sandin repeated ly chose flexibility
and pover rather than obviousnesa in the parts he created. The resulting system is both parsimonlous and productive.

His first isportant decision was that all parts of the syatem should be coppacible and fdiotproof, so that any user could frivolously plage circuits.

Indeed, Sandin deeided to build it like a music pynthesicer: by making all syateins electrically com pacibie (as they are can be used to alter or influence any other aignal. This is a very profound decision whose far-flung resulte have not yet been fully explored even among Sandin's rather fanatical students.

Sasically, the incoming video image is "atrippignala turning in ing information, so that all be freely modified. Only at the final output stage are the jots and citcles of the video signal put back

Thus the first and last blocke of the Imag Processor act like bookends, between which the other modules have their fun. The first block makes the incoming signal into "naked" video, the last block dresse

Por the sake of clarity we will refer to the outputs as pletures, or as black, white or grey, screen; but they may be curned back into the system and function as anputs as vell. "Mhite" means +.5
volts, "black" means -.5 volts.

Let us consiaer, then, Sandin's modulea and what they do individually to the brightness aignal $\frac{z}{\text {. }}$.
Coabinations are beyond the scope of this articie

1. ADDER-rifripliER. This combines two input
channels, either directly or as opecified by ethird

ADDER
Multipliep

The channel A inputs are added together and mulziplied by C the channel i inputs are added cogether and multiplied by the reverse of $C_{\text {; }}$ both results are
added to make the output. (NoTE: this unit is used added to make the output. (NOTE: this unit is used
among other things, for fades and keying.)
2. COMPARATOR. This is like Kodalith film, mak Ins an image into stark black and white. Its output is pure black or white. One Input aignal (the video) is compared vith another input signal (reference level While one 1a greater the output goas all black,
ond while the other ta greater it goes ali white.
3. value scrambler. This ia a aingle module dividing the picture into eight levels. It may be ing the brightness gpectrum by quantum jumps. The loor and cetling of the signal to be divided are specified by the two control channels, but the dividined. Each correspond 1ng output level may be controlled by a knob.

Thus from a range of input values, we get an utpot step-function each of whose brightnesses is in-

Note that these devices may be arranged in parallel, thus dividing the brightness spectrum into as many levels as desired
4. oscillator module (very unusual). Sandin's achlators are voltage concrolled, Just like the one ancic aynchesizers. However, if given any kind of (or submultipie) they lock into the nearest multiple (or submultiple) within the specified range. (But hen the control signal, if any, tweaks it higher or
lower.) Standardized output comes in sine, square and sawtooth.

OSCILCATOR

The two planned uses were A) with a sync, to enerate fixed patterns, and B) uithout a sync, to senerate movable patterns. If both inputs are used, cillator, which tends to grab at pasaing submultiples.
5. Differentlator. Basically this aces edgea in the pleture, or any ather part of a acan-11ne whose color is changing. Its output is proportional to change occurring in the brightness of a scan-1ino, As the input goes from black to white its output is light; as the input goes from white to black its out-
put is dark. (The input hole selected deternines the atoount of multiplication.)

Holography is one of those Modern Miracles that we really can't get into. It is mind-blowing,
influential, and of unclear importance.

Theoretically predicted by Dennis Gabor, the $\frac{\text { hologram (Greek "uhole pleture") Uas finally made }}{\text { to work in the late fiftlea by Leith and upatoiek }}$ Since then dozena of other types of holograma have been experimented with, inciuding color holograms movie holograms, video holograms, sudio holograms and gracious know what.

Basically a hologram is an all-around picture. It doesn't look 1 ike a plicture, but looks like a

Yet it is a marvel.
A basic hologram (- actually it should be called a laser hologram or Leith-Upatnieks hologram, but we've no cime for such distinctions--)
is one of these smudgy pictures which, when viewed under a proper laser getup, shows you a threedimensional picture. Horse than that: an you move your head, the picture changes correspondingly. It looks, not like the flat surface it is, but like
a lit-up box with a model in it.

What does the hologram do? Actually it recreates, not a single view, but the entife tangle of 1 ight rays that are reflected from the real object. Even down to bright reflections, which
scintillate in the usual way, as from chromium

The only problew: ordinarily they have to be used with laser light, which is apookily onecolored.

Notes from all over: art atylist Salvador Dal presided at an unveliling of "the vorld's firat 360 hologram" at a New York gallery not long ago. The ct was song styllat Alice Cooper.

The Haunted House at Disney World in Florida will ride you through a building full of holograms That's one way to move through ghosts, all right.

There is a New York School of Holography
6. FUnCTion generator. This device is hardest explain. Let 6 do it in terns of that first module, the eicher a positive or a negative picture, depending on which input you select?

Well, the Function Generator divides the input bright
nesses into three ranges, and multiplies each range posi-
cive or negative, in proportion to its oum knob setting.
Thus the combined setting of the three knobs generat en a "function," or curve, from the alopes of the individual settings. See graph. What in photography is called tIngs. The others are nameleas.

7. COLOR EHCODER MODULE. This is the last block. Into ti go three alignala, the deaired red, blue and green;

BODY EIECTRONICS

"I aing the body slectric..." -- Walt whitman
There are various people who want to at-
ach olectronics to people's bodies and brains.
There are basically two starting points for this ambition. One is authoritarian, the are not equally dangerous, however.

Let's consider first the authoritarians. Prof. Delgado of Yale has demonstrated that any creature's behavior can be controlled by jolts. to the brain. Delgado has deait especialiy with the negative circults of the brain, that places where an einectrcement"). In Delgado's
(or
most ging bull with just a teeny radio signal. En-
thusiastically Delgado tells us how fine this thusiastically Delgado tells us how fine this
sort of thing would be for controlling Undesirsort of thing would be for
able Human Behavior, too.

Now, let's consider just what we're talking about. In these experiments, needles are implanted in the creature's brain. This can in-
volve removing a section of the skull, or it can be done merely by hamaering a long hollow needle
straight into the skull and thus the brain.

The researcher, or whatever we want to call him, had better know what he is doing. But due destruction caused by such needles will have not observable effects if done properly.

The hollow needle, once in place, becomes a tube for shielded electrical wires, whose bar metallic tips may then be used to carry reached by the tip of the needie, whenever tiny signals are applied.

Now there are regions of the brain, distributed irregularly through its mysterious contents Which are loosely called the "pleasure" and what the organism does when you jolt it in thos places. (We do not know whether jolts to these areas really cause pleasure or pain, because these things haven't been done to human beings.
Yet. The creatures it has been done to can't Yet. The creatures it has been done to can't
teli us just how it feels; thus "pleasure" and tell us just how it feels; thus "pleasure" and

Anyway, what happens is this. If you stimulate a creature in the "pain" system it tends to stop what it is doing-. this is called negative
reinforcement-- and if you stimulate it in the reinforcement-- and if you stimulate it in the pleasure system, it tends to do mor
was doing. Positive reinforcement.
possibilities Nome people this suggests wonderful
Delgado, for instance, believes that this technology gives us everything we need for the control of Anti-Social Tendencies. Criminals, psychopaths and Bad Guys in general-- all can be
effectively "cured" (i.e., put on their best be havior) by these techniques. All we have to be heh heh, is get into their heads, heh heh, habits of proper behavior. And with these new techniques reinforcement, we can really teach 'em.

In principle this is just a drastic form of behavior control on the B.F. Skinner model (depic ted also in Nineteen Eighty-Four and A Clockwork ling because of its violation of the individual's

Skinner has the same naive, simpleminded solutions for everything. All "we" have to do-guys acting on behalf of society, etc.-- is con trol the behavior of the bad guys, and everything desire.

The reader may see several problems with this.
In the first place (and the last), there is the obvious question of who we are, and if we are
going to control other people, who is going to going to con
control us.

At a time when our "highest" leaders show themselves preoccupied with low retaliations and nower initiatives, we can wonder indeed if it is not more important to prevent anyone from ever
getting this kind of control over humans than to
facilitate it

Even if that weren't a problem, there is the more simpleminded question of who in the existing
systom would use such techiques. It turns out, of course, that they would be added to what is more laughably called the Justice System. All the sadists you could possibly want work there. (And no doubt some very nice guys-- but experiments have demonstrated horrifically that decent people, turned into "guards" oven for a short time time immemorial.)

So, like truncheons and electric shock therapy and solitary confinement and everything else he realm of Available Punishments, not to be used with clinical precision but with gratuitously brutalizing intent, new tools for punitivity and adism. The "correctional" system would have to e magically corrected itsel. before such tools could he employed wispect is not good. things

Such schemes grow, of course, from a carica
of the malefactor:- thinking him to be some ort of miswired circuit, rather than a human being caught up in anger, pain, humiliation and unem ployment.
(There are also a lot of canards about Free Will, but these do nothing for either side in this
controversy.) NEW FACULTIES

Starting from an entirely different outlook, various designers and bio-engineers are trying to add for the voluntary benefit of the recipient.

A number of research and development efforts are aimed at helping those with sensory impair
ments, and electronics obviously is going to ments, and

An example: a firm called Listening, Inc in Boston, founded by Wayne Batteau (whom John W. Campbell considered one of the Great Men of Our Time), devised a system for helping the totally eaf to hear. Supposedly this could transmit the actual sensation of hearing into the nervous syscal induction. The machine was sold off: whether it ever got a safety rating I don't know.

This is the sort of thing people would like
do for the blind, as well.
Now, in principle, it might be possible to ransmit an the might not involve opening the skull.) Somebody's working on it.

In a related trend, numerous design groups are attempting to extend the capabilities of the uman
"Possums" (from Latin "I can") are devices to aid the handicapped in moving, grasping and controlling. Whatever motions the person can
make are electronically transposed to whatever ealm of control is needed, such as typewriting or guiding a wheelchair. ("Waldo" is Heinlein's term for a possum that can be operated at a dis

In the space program, though, they call them $\frac{\text { telefactors. A telefactor is a device which con- }}{\text { verts or adapts body movements by magnification }}$ or remote mimicking. Unlike possums, they are meant to be operated by people with normal faculties, but to provide, for example, superhuman
strength: cradled in a larger telefactor body, man can pick up immense loads, as the movements man can pick up immense loads, as the movements greater robot arms.

Telefactors can also work from far, far away, Thus a man sitting in a booth can control, with the movements of his own arms, the artificial arms of abot vehicie on another planet.
(This whole realm of sensory and motor mechanics and transposition is an important aspect of
what I call "Fantics," discussed on pp. DMy 8 - 50 .

Then there are those who, like How Wachspress see nearby), want to expand man's senses beyond he ordmary, THOUGHTS

There are two problems in all of this. The irst and worst, course, is who controls and what $W_{\text {as }}$: hold them back from the most evil doings Recent history, both at home and abroad, suggests

The second problema wispish
The second problem, wispish and theoretical next to that other, is whether in turning toward ose track of all that is human. (of course this s a question that is asked by somebody whenever nything at all changes. But that doesn't mean it

In the face both of potential evil and dehumanization, though, we can wish there were some boundary, some good and conspicuous stopping place
at which to say: no further. like the three-mile at which to say: no further, like the three-mile hink it should be the human skin. Perhaps that's old-fashioned, being long breached by the Pace
maker. But what other lines can we draw?

The prospects are horrorshow, me droogies.

bibliography

T.D. Sterling, E.A. Bering, Jr., S.v. Pollack Visual Pronthesis: $\frac{\text { The }}{\text { Interdiciplinary }}$ Monalalog. ACM

PSYCHO-ACOUSTIC DILDONICS

I originally hadn't intended to include any hing like this in the book, wanting it to be a articuler sccess catalog and all ith

Remember how we laughed at the Orgasmoron in Woody Allen's Sleeper? Well. It turna out not to be a joke.

An individual named How (not Howard) Wachspress. electronicker-in-residence at a San Franclaco radio station, has been developing just in mind. The secret was broken to purposes in mind. The secret was broken to the world in Oui magazine carlier this year; but Hefner
the publisher, evidently held back the more startling photographs of a model in electronically induced ecstasy

Wachspress' dévices transpose sound (as audio signals) into feelings: you touch your fixture attached to his device-- or other soft is attached to a hi-fi.

The sensations, it is claimed, are profound and moving. You may take them anywhere on your body; the effect is deeply relaxing and has reached an wasn't known before, much like Olds' discovery of the "pleasure center" in the brain; he sees it as a new modality of experience and a generaization of music and touch. That is the main point. "Hyper-reality" is where he says it gets you: a point curiously congruent with the author's own notions of hypertext and hypermedia as extensions of the mental life.

This said, we can consider the prurient aspects of Wachspress' Auditac and Teletac devi ces (which he intends to market in a couple of years as hi-fi accessories, b'gosh). When played with the right audio, in the right places, and a good operator at the controls, they provide

Wachspress' work ties in interestingly with today's "awareness" movement, of which Esalen is the spiritual center, which holds that we have gotten out of touch with our bodies, our feelings, our native perceptions. As such, the Wachspress machines may be an unfolding mechanism for the unfeeling lightness of Modern Man-- as well as a less profound treatment for "marital difficulties" and Why-Can't-Johnny-Come-Lately.

Inscrutable San Francisco! Wachspress gave a number of demonstrations of his devices in Bay Area churches, until he became disturbed at immodest uses of the probe by female communicants who had stood in line to try the machine.
(Auditac, Ltd., Dept. CLB.
1940 Washington St..
San Francisco CA 94109.)

Harry Mendell, a good friend of mine, rigged an
eresting experiment while he was still in high school
He used a little Hewlett-Packard minicomputer, which the manufacturer had generously loaned to his knights of columbus Computer club of taddonfleld, N.J.

Harry hooked the Hewlett-Packard up to a CRT display (see pp. DM 6-7, DM $22 \cdot 31$. At the top of the CRT, following his program, the computer continuously displayed che let
ters of the alphabet. A iittle marker (called a curgor) ters of the alphabet. A ifttle marker (called a curgor) would skip along underneath
ker for each of them in turn

Harry rigged one more external device: a set of electrodes. These would be strapped, harmlessly, to the head of a subject. Harry's computer program used these al trodes to measure alpha rhythm, one of
pulses in the brain that come and go.

Evary time the subject flashed alpha, Harry's program would copy
sicting in this rig, subjects were able to learn, rather quickly, TO TYPE words And SENTENCES. Just by flashing alpha rhythm when the cursor was under the righ letters.

Jubllant, Harry showed this sotup to an eminent nourophysiologist from a great university nearby, a man spectalizing in electrode hookups. Harry wain a high,
and did not understand about Professionalism.
"What's so great about that?" uniffed the eminent professional. "I can type faster."

So Harry dropped that and went on to other stuff.

PCTURE PROCESSING

"Picture procesaing" is an important technology, largely separate from the reat of computer graphics. It means taking an ancoming to it. (Some now call this area computer pictorics.")

First of all, there 1 s image enhancement. This mean taking pictures, dividing them into pointa whose brightneas is geparately measured, and then using special techniques for making the picture better. To people familiar with photography, thas may sat photographs posaible; to photographeach step. Nevertheless, various mathematical techniques such as Fourier Analysis (mentioned elsewhere) do just, that, producing a new data structure improving on the original data. Surfaces ap pear amoother, edges sharper.
(These rechniquea have been extenaively used to clean up photographa sent back from our unmanned apace chicles-- both tho en-- secret Sentries in Space hose spying on our own-- see Secret Sentries in space

Then there are recognizers-- programs that look a the data atructure froman input picture, and try to discern the 11 nes, comers and other features of the picture. (While your eye instantly sees these things, computers do not, and must look at the dots of a picture quences is no simple matter.)

For recognizing more complex objects in picturesboxes, spheres, faces or whatever- more complex struc-ture-analyzing programs are necessary. As the phass inities of what might lesing programs. (This becomes a branch of artificial inteliligence, a mialeading term for a curious field, discussed on p. ${ }^{\prime \prime}(2-14$.)

Numerous computer people think it is important to natch up our computer graphic display systems (described variously on this side of the book) to image input sys tems. This ia a matter of taste.

These are all basically techniques for making a data structure. Any data stored in computers wust have, of course, a data structure- which basically means any
arrangement of information you choose. (see p. $26-9$.)

These various techniques are intended to create reduced data structures, recording only the "moat important data of the picture-from which new and structure originally shown in the initial picture. How much it's going to be possible to create these data structures from input pictures remains to be seen; some of us think it's not going to be generally worthwhile.

BIBLIOGRAPHY

Azriel Rosenfeld, Progress in Picture Processing 1969-71." ACM Computing Surveys June 73, 81-108.
Ken Knowlton and Leon Harmon, "Computer-Produced Grey Scales." Computer Graphics and Image Procersing, April 72, $1-20$

Philip J. Klass, Secret Sentries in Space. Random, 1971, \$8. Interesting general book on geoposance. "Now-it-can-be-told" approach.

SATELITE PICTURES OF YOUR OWN HOMC COUNTY, OR WHATEVER

You can get pictures of any area you want from ERTS (Earth Resources Observation ERos Data Center (no, not ERos Data center (no, not a
dating eervice, seep. 64), dating service, see p. 6y
Sloux falls SD 57198 , or cail 605/594-6511 bet. 7 AM \& PM central time.

LIZZIE OF THE LINEPRINTER

A famous converted picture. The painting was divided into 100,000 brightness-measured spots by H. Philip Peterson of Control Data Corporation; letters on the ed 100 levels of grey. Above: Control Data's vered 100 levels of grey. Above: Control Data's ver sion, reprinted by permission. Below: a cut-down
version that often turns up. (From original flat 2D artwork by Len DaVinci of Medici Associates.)

NOTE: this is not a "computer picture." There is no such thing. It's a quantization put out on a lineprinter.

KEN KNONLTON

Kenneth Knowiton is a Bell Labs lifer rall, patrician and gracious, his work, like Sutherland's, shows the inner light of unifying intelligence. He works in Max Mathews' section f Bell Labs at Murray Hill, where they do all that interesting stuff with music and perceptual psychology and so on. During the last decade Knowlton has turned out vast quantities of articles, processed pictures, movies, and actual computer languages; while any ordinary man would be satisfied to be so productive appar ently he does a lot of ather things in his work that he doesn't talk about

Some of Knowlton's best-known work has been in picture processing, where he has converted photographs into mosaics of tiny patterns-- which nevertheless show the original.

His first widely-known language was BEFLIX (BEll Labs movie-making system); this was programmed for the 7094 in the early sixties BEFLIX allowed the user to create motion pictures by a clever mosaic process that used the out put camera more efficiently. (Actually, the lens was thrown out of focus manually and the entire frame created as a mosaic of alphabetical characters; this did the whole thing much more quickly and inexpensively.)
(Some of the clever data-handing techniques of BEFLIX Knowlton then turned around and used in L^{6}, a language which made these echniques available to other computer people. This may sound like only a computer technicality but it's the sort of thing that's widely appreciated (L6 stands for "bell Labs' Lower-Level List Language."))

Wanting to get outside artists interested in BEFLIX and related media, he worked for a time with film-maker Stan Vanderbeek; from this Knowlton saw that artists' needs were more intricate than he had anticipated. Augmenting BEFLIX with some of the things Vanderbeek asked for, Knowlton came up with a new lan guage called TARPS (Two-Dimensional AlphaNumeric Raster Picture System). This in turn led to EXPLOR (EXPlicit (ly provided 2D Patterns,) Local (neighborhood) Operations, and Random ness). EXPLOR is fascinating because of its originality and generality-- not only does it modify pictures and serve as an artist's tool, but it has fascinating properties as a computer language and may even have applications in complex simulations for technical purposes

Since Vanderbeek, Knowlton has entered into a long and fruitful collaboration with Lillian Schwartz, a talented artist. Their many films have been clever, startling and powerful. I must say that they grow on you: I liked them at first, but when 1 saw five or six in a row this January, I found them just incredible. Because they are abstract, and full of fast-changing patterns and reversals, they take some adjusting to; but they're worth seeing over and over

EXPLOR may be thought of as a highly generalized version of Conway's game of Life (see p. 48). You start with two-dimensional patterns as your data structure; these can be abstractions or even converted photographs, as in a recent Knowlon-Schwartz film showing Muybridge's Running Man. In your EXPLOR program, you may then cause the pattern to change by degrees, each cell of the pattern change by degrees, each cell of the pattern
reacting to the cells around it or to random events as specified by the programmer.

EXPLOR, running without external data, comes up with some extraordinary snakeskin and Jack Frost patterns. But its uses in traffic simulation and various other studies of populations in space could be very interesting

EXPLOR has obvious artistic applications. Lillian Schwartz is using it extensively in film making. It's now running on a minicomputer feeding to a modified Sony Trinitron color T (This color setup was created by Mike Noll and is described in a recent issue of the CACM though only for black-and-white TV; the color is more recent. It stores the color picture as a list of sequential colors represented in the computer's core memory, each dot being represented. Cf. "Boyell's Torrarium." p. In 38.)

Knowiton has used EXPLOR for teaching computer art at the University of California; the language is available programmed in "medium size" Fortran from Harry Huskey, Dept. of Information and Computer Science, U.
at Santa Cruz, Santa Cruz, California.

This is a non-aimple picturs
oonversion. The original.
photograph was converted into
measured pointe; but these
together patterrs by a
program in the EXPLOR language. c) Knowiton $\$$ Harmon.

AUDIO

Wish there were room to talk about plain regular audio here- maters like "binaural" recording, and Why don't they make hi-fi systems
based on a Grand Bus (see pit2)? But there's based on a Grand Bus (see p $1 / 2$)? But there' no room here.

AUDIO AND COMPUTERS
People are occasionally still startled to hear that computers can make sound and muaic. They can indeed.

First of all, note that an incoming sound is a fluctuating voltage and can thus be turned into a data structure, i.e., a string of measurements.

To make sound by computer is the obverse. If the computer can be set up to send out a string of measurements, these can be turned back into a fluct usting volcage, and thus make sounds.

In the easiest case, the computer can just send back out the voltages it originally got in. This is rather ridiculous- using the computer just as a recording devfce-- but it's a clear and simple example.

The question after that is what next: how to have the computer make interesting streams output measurements, i.e., sounds and tones.

There are numerous methods we can't go into. Max Mathews, at Bell Labs, has for years been doing music by computer; his current system is called GROOVE. Heinz von Foerster, at the University of Illinois (Urbana), has been doing the same. Another lab at MIT has just gotten a PDP-11/45 (see p. Y2) for the same purpose.
(The problem is: can the computer keep up with the output rate needed to make music in real time? maybe the $11 / 45$ can.)

Another approach is to relleve the computer itself from making the tones, and use other de-vices-- music synthesizers-- for this, controlled by the computer. This is essentially the approach taken with General Murtie s Musk Box (see 9.57), rer there , amense one-of-a-kind lobbie- is under more general computer control.

$$
\text { Symitolic } \quad \text { i.e., }
$$

musical notation
Note that the computer handing of trusical notes, as symbols, is another task entirely, closely resembling computer text handing (mentioned variously in the book). A high-power structurfor storing and Thinkertoy (see p.DMRS) is fine for storing and presenting written music.

And, of course, such stored musical notation the hookups menture) can obviously be played by

SPEECH BY COMPUTER
You fay have heard about various k inds of "talking computer." This deserves some explanation.

Computers may be made to "talk" by various means. One is through an output device that
simply stores recordings of separate words or syllables, which the computer selects with ppropriate timing. (Machines of this type have bee sold by both IBM and Cognitronics for a long time.)

A deeper approach is to have the computer synthesize speech from phonemes, or actually make the tones and noises of which speech is composed. These are very tricky matters. Bell Labs, and others, have been working on many of these approaches.

The real problem, of course, is how to decide what co say. (This was discussed under Artificial Incelligence, p.om 12.1%.)
audio analysis and enhancement
The problem of analyzing audio is very like the problem of analyzing pictures (see p.om 10), and indeed into the computer as a stream of measurements, and the selfasme technique of Fourier Analysis This reduces the audio to a series of frequency meased. ments over time-- but, paradoxically, loses little of the fidelity.

Once audio is reduced to fourier patterns, it can be reconstituted in various ways: changed in timing and pitch independently, or enhanced by polishing techniques like those used in image enhancement (see p. Diq10).

This has been done with great success by Tom Stockham at the University of Utah, who has reprocessed old Caruso records into improved Eidelity. In the picture we see him with equipment of some sort and an old record.

Univeratity of Uton
(Stockham has been in the news lately, as one of the panel puzzling over the notorious 18 -innute Gap.)
(The author has proposed the name Kitchensync ${ }^{\text {tm }}$ a system to synchronize motion pictures with "wild" sound recording by these means.)

BIBLIOGRAPHY
Thomas G. Stockham, Jr., "Restoration of old Acoustic Recordings by Means of Digital Signal Processing." Audio Engineering Society preprint no. 831 (D-4), presente
vention.
Prentiss H. Knowlton, "Capture and Display of Keyboard Music," Datamation May '72, 56-60. Describes a setup he built at U. of Utah that allows pianists to play music on an ordinary keyboard, and converts the input to symbolic representation in the computer. It uses an organ, a PDP-8 and a couple of CRT displays.
Heinz von Foergter and James Beauchamp, Music by Computers. Wiley, 1969. HAS RECORDS IN BACK

Some of the early Bell Labs work may be heard on an excellent Decca LP Muse fred on p. 8-9.)

time at for THREE COMPUTER DREAMS:

THE It's tine for ave THREE to be reploced DREAMS, with the critical eye.

These are three topics of greal imporance of importance, untortunately, less for what they have actually accomplished than for the degree to which they have confused and intimidated pe ple who want to understand what's going on.
Merely to mention them can be one-upmanship Marely to mention titles mean so much, so many differen All three fitles mean so much, so manting when specinc things, as to mean almast nree have de-
lumped together as a whole. All ther veloped a web of intricate technical facts (and sometimes theorema), but the applicability of these elegant findings is in all three cases a matter open to considevable scrutiny.

Since ench of these fields has developed considerable body of technical doctrine, the reader might well ask: why aren't they on the
other side of the book, the computer side? The ather side of the book, hemputerman's dreams, dreams of considerable intricacy and persuasivencss, and we are not considering the technicalities here anyway. As on the other side, the problem is to help you distinguish apples from oranges and which way is up. For more go elsewhere, but 1 hope this ordentation will make sorting things out quicker for you.

These three terms-- "artificial intelligence," information retrieval." "computer-assisted inatruction"-- have a number of things in com mon. First, the names are so portentous and ormidable. Second, if you read or hear any thing in these fields. chances are it will have n air of unla ind mathenatic may combing techrive you a dene that you ean't understend any of it This is wrong The fact that there are obscure and Deep Teachings in each has no bearing on the general comprehensibility of what they are about. More importantly, the question of how applicable all the things these people have been doing is going to be is a question of considerable importance, especially when some of these people want to take something over Don't get snowed.

Each of these fascinating terms is actually roof over a veritable zoo of different researchers. aften of the most eccentric and interesting sort, each generally with his own dream of how his wn research will be the breakthrough for humanity, or for something. It would take a and ciluler of and las ing again. we just

Another interesting thing these three fields ave in common: the requent use of a classical computerman's puidown on anybody who dares question whether their super-ultimate goals ca

The line is, "WE DON'T KNOW HOW TO DO hat YET."

If somebody pulls it on you, the reply is

ONE OF THE FEWGODD LAYMEN'S COMPUTER JOKES

THE GOD-BUILDERS :
ARTFC'HL NTELCMEENCE
and mostificial Intelingence" is at once the gexient and most owinous terim in the world. It chills and imdimulation of processet of mind, by any means at all; but it generally turns out to be sotae form or anothe
of compurer simularion (gee "Simulation." p. 58). Actually, "artificial intelligence" hai generally become an all-inclusive term for syatemat that amare, ascound, mystify, and do not operate according to principlea which can be easily explained. In a way, "arti techniques become well-worked out and underatood, their Apparance of intelligence, to che soph1sticated, continually recedes. It's like the ocean: however wueh ou take out of it, it atill atretches on-l as limit-

Unfortunately laymen are so impressed by compute In general that they easily suppose computers can do anything involving information. And public understand ing is not foscered by certain typen of stupid demontration. One year I heard from numerous people sbout
how "they'd seen on TV about hou computers write TV cripts"- what had actually been shown was a hokey en ctanent of how the computer could randouly decide whether the Bad Man gets shot or the Good Guy gets shototh outcomes duelfulity enacted by guys in cowboy out ita. Duh.

It should be perfectly obvious to anybody wha' ruahed even slightly with computera, however- for The Bruah, see the other aide- that they Just don't
work like minds. But the analogy hangs around. (Edpund C. Berkeley wrote a book in the forties, I belfeve th the mislesding title of Giant Brains, ox Machines
That Think. The idea is still around.)

Here's a very aimple example, though. Conaider maze drawn on a plece of paper. Just by looking, ve cannot simultaneously comprehend all its parhways; we have to poke around on it to figure out the solution. computers are sort of like that, but more so. While our
ayes can take in a simple picture, Ilke a square, at once, the computer program must poke around in its dat epresentation at length to see what we saw at once. The principle holds true in general. The human ind can do in a flash, all at once (or "in parallel") any things that wust be tediously checked and tried by the highly sequential computer prosram. And the more we know sbout computers, the more impressive the
human brain becomes. (The seeming cleverness of some human brain becomes. (The seeming cleverness of some phenomena being imitaced.)

Nevertheless, it is intereating to try things ith computers that are more like what the mind does and that is mostly what artificial intelligence is about.

In various cases this has resulted in helpful tricks that turn out to be useful elaewhere in the
computer field. In this sense, artificial inceliigence computer field. In this sense, artificial inteliigence is sort of like menthoi: a inttle may improve things here and there. But (in my opinion), that does not
mean a whole lot of it would make things better still.

Severtheless, some artificial-inteligence enhusiasts think there is no limit on what machines can o. They point out that, after all, the brain fe a anchine. But so is the universe, presumably; and
pattern recognition
This is one of the most active areas in artiicial fatelligence Department money. (It might be nice, goes the easoning, to have guns that could recognize tanks, pictures, radars that could recognize missiles...)

What it borle dom to is the etudy of cluen and
 things. 11 ke parte of pictures (even atraight ines progran) or like handuritigs (see below). to the worse casee, though, carefal seudy only raleen the most horrendoun technical probleas, and the purauit study (arciciea mave titles like "Senticivity Paraseters in the Adjuatnent of Dincriminatore," eeanin 1t Sure Ia Hard to Draw The Line).

But in some felletioue casen, tesamichere acsble systea of clues. For instence, take the problem of witten lnput to computers. (Some people don't 1 1ike to type and would rather write by hand n special input tablets.) But how can a progra ecognize the letters? Aha:
 and try to recognize it. The program extracte sertes of "propertieg" for the character and torem them in an array. Every character in a given
 oroperty scores. But the Ledeen recognizer must cores of the lettera that each individual drave ause be put into the aystem before that individupl's lettering can be recognized. Even then it's a quescion of probability, rather than certainty, that
given character will be recognized.

COMPUTERS DON'T ACTUALLY THINK.
 YON JUST THINK THEY THINK.

(We thint.)

HEURISTICS (pronounced hewRIStice)
If we want to make a coapucer do what ve know perfectly well hos to do ourselves, then all ve do s write a program

Aha. But what if we want a computer to do omething we do not know how to do ourselves?

We taust set up its program to browse, and search,
and seize on what turns out to work.
This is called heurtartes
What it amounts to basically is techniques for ing things out, checking the results, and continug to do more and wore of what seems to vork.

Or we could phrase it thls way: looking for ucceasful atrategies 1 n whatever area we re dealin keeps various scores of how well it's doing-a sort of elf-congratulation-- and makes adjustment in favor of what works best.

Thus the Greenblatt Chess Program, mentioned un an "try them out" - what it actually does is test specific patterns of moves for the overall goodness of their resulta (in terms of the ubual positional advantages in chess), and discard the strategies that don't get anywhere. It does this by comparing its "ecrategies" (poasible move patterna) against the
(If you've read the other side of the book, heuristics may be thought of as a form of operationa
research (p. 58) carried on by the computer itself.)

In some ways heuristics in the most magical orea f artificial intelligence: fre results are the most er magics, it boils down to technicalities uhich loge the romance to a certain extent.
illustrating also certain probletns of Artificial Intelligence

A very large artificial-intelligence system (goes the story) had been built for the military to help in long-range policy planning; financed by ARPA. with people from M.I.T., Stanford
"The system is now ready to answer ques tions," said the spokesman for the project.

A tour-star general bit off the end of a cigar,
said--

War?" "Ask the machine this: Will it be Peace
The clerk-typist (S_{p}) translated this into the query language and typed it in.

The machine replied:
YES
Yes what?" beliowed the general.
The operator typed in the query.
Came the answer:

An teportant branch of Artificial Intelligence 1A oncerned with what bunches of imasinary neurons could
do. even neurons that we gade up to follove particular rulen. This ares of st udy in amovhere betveen neurol-
ogy and mithematice; much of it 18 concerned with the

 phyiologists, and othera. (The hypotheical atudied,
of course, alert remoarchers to coaplex configurationa of course, elert renarchers to cooplex configurationa
and poanibilitien that any turn out to occur in reality and veli at being inceresting for their own anke-- and conceivably at uaftul vaye of organizing things to be buift.)

Howerer, an earlier with, that you could imulate
urons cill you got \& person, ta ebout dead.
SLmLATION OF THOUGHT-PROCESSES
Nobody talkn anymore about andiating artificial brains; chere'
approximations.

Hovever, a cleaner srea is in the eimulation of thought: creating cotaputer programs that wimic man's Trying things out, deducing thoughts from what's already knom, following through the consequences of guesaen-- chese can all be done by prograas that "try
to figure out" anavera to problemb like The Cannibal and The Miasionary, or whatever.

automata

"Autonata", at the tern is ured in thin field, 1) Just a fancy word for imaginary critters, parti(The Game of Life, ase p. Y8, is an automaton 1 in this senee.)
elforganizng systers, self-reproducing systens AND SO FORTH

These are teras for inaginary objecta, having exactly defined nathesatical properties, about which arifous abatract things can be proven that tend to be

SPEECH

. sentrace gentration
The problem of computers speaking human languages not to be confured with computer languages, pp. 15-25 and huann tykes start doing it effortlessly, it is easy to suppose that it's a basically easy problem

нo way.

Only aince the mid-fifties has human language begun to be understood. That was when Noam Chomsky discovered th aner structure of human languages: namely, that the long (and coaplex) sentence constructions of language are built ut of certafn exact operations. Previous lingulats had led to complexities whith Chomsky ofscovered were unnecesary. It is unnecessary to catalog sentence types themselves if we can simply isolate, instead, the exact process-

These processes he called transformations (a term h borrowed from mathesatics). Alt urcerances are created fro chewed by transformations into surface structures, the inal utcerances. Examples of kernels: The man lives in the tion: The man lives in the white house. Kernel: I go. Result of past-tense transformation: I went.

The most iaportant finding, now, is that the transformations are carried our $\frac{1 \mathrm{n} \text { orderly sequences: any sentences }}{\text { can have more tranafornations carried out on }}$ an have more cranaforna tonk carried out on 1 , sll adhertences of any language. Linguists since then bave confirmed Chomsk's con-
fecture, and proceeded to vork out the fundamental trans formations of major languages, including English.

Now, one result of all this is that it turns out to be easier to generate sentences in a language than to un-
derstand them. Why? Because it is comparatively easy to rogram computers to transformations to kernels, ur very hazd to take apart the reault. A complex "surface structure may have numerous posible kemels-- doen
"Time flies like an arrow" have the same seructure as "Susie sings like a bird" or "Fruit tlies like an orange?"
esult. to program a compuler to generate speech them is, Linvent sentences about a data structure and type ncoming sentences, and break them up into their kecogel meaninga, is not.

We noy think of a language-generating computer sya-

2. sentence recognition

Chomaky and others have diacovered that aete of tras iormation rules (or gramarg, pratie be) vary conaiderably are easy to take apart, or parge; suche surface etructure $\frac{\text { context-free }}{\text { ide, are of } \frac{\text { languagee. }}{\text { chis rype.) }} \text { (Host computer languagea, see other }}$ side, are of th1s type.) Unfortunately natural languages,
like English and French and Navaho, are not context-free. It turns out that the huaan brain cen pick apart language structures because it's so good at making senaible guesaee as to what 1", meant-- and if there is one thing hard to progran for compurers; te is senaible guesaing.

This means that to create computer syatens which will anke real sentences apart into their meaninga is quite dificult. We can't get pite the varioun strategiea here;
but mont renearchers cut the problem down in one way or out mon.

Dorothy read the card aloud, spelling out the big
words with some difficulty; and this is what she read

SMITH a TINKER'S Patent Double-Action, Extra-Responsive. Thought-Creating. Perfect-Talking OMECHANICAL TMAN Fitted with our $\mathrm{S}_{\text {pecial }}$ Clock. Work Attachment. Thinks, Speaks, Acts, and Does Everything but Live

"How queerl" said the yellow hen. "Do you
hink that is all true, my dear?"
$5 \$$

$$
O z m \quad a \quad o f \quad O z
$$

"I don't know," answered Dorothy, who had more to read. "Listen to this, Billina:"

$$
\begin{aligned}
& \text { DIRECTIONS FOR USING: } \\
& \text { For THINKING:- Wind the Clock-work Man under his } \\
& \text { left arm, (marked No. .). } \\
& \text { For SPEAKINGG:-Wind the Clock-work Man under tis } \\
& \text { right amm, (marked No. 2.) } \\
& \text { For WALKING and ACTION:- Wind Clock-work in the } \\
& \text { middle of his back, (marked No. 3.) }
\end{aligned}
$$

"Well, I declare!" gasped the yellow hen, in amazement; "if the copper man can do half of these things he is a very wonderful machine. But I suppose it is all humbug, like so many other patented articles."
"We might wind him up," suggested Dorothy, "and see what hell do.

GORDON PASI:
Gordon Pask is one of the maddest mad scientists I have ever net, and also one of the nicest. An cloquent English leprechaun who dresses the Edwardian dandy, Pask sows awe wherever he goes. A former doctor and international fast-talkers, conference-hopping round the globe Iron Utah' to Washington to his project at the Brooklyn Children's Museum This spring, 1974, he has been at the University of Illinois at Chicago Circle, but soo In a field full of brilliant eccentrics Pask has no difficulty standing out.

Pask is one of the Artificial Intelligencers who is working on teaching by compuoriginal core of his interest is perhaps the process of conceptualization and abstraction

Pask has done a good deal on the matheatics of self-contemplating systems, that is symbolic representations of what it means for a creature (or entity omega) to look at things, see that they are alike, and divine abstract
conceptions of them. Acrowning moment is when Omega beholds itself and recognizes the continuity and selfhood. (Pask says several others-- scholars from Argentina, Russia and

Models and abstraction, then, are what we
may call the first half of Pask's work.
Gordon Pagk wilt be continued on p. 3My7.

- SPEECH OUTPUT AS SOUND
'talk" by ponverting the language surtace computere to their progrnaerting cose the language surface atructuree
"Audio,

4. speece input to corputers by actual sound

So far we have been talking about the cooputer' mant pulation of language as an alphabelical coding or similar representation. To actualiy talk at a coaputer if another
ketcle of tioh. This means breaking down the acund inco phonene: and chen breaking it into a data ntructure uhich can be treated
difficult step.

A few attempts have been made to market devicea wich would recognize liaited apeech and convert it to yabole to go into the computer. One of thea, which supponediy con
distinguish among thirty or forty different distinguish among thirty or forty different popen vords,
is supposedly atili on the sarkel. Specific users have is supposedly atill on the earket. Specific uiers have to
"train" it to the particulars of their voicen.

I repeatedly hear rumora of "dictation machines" which fin type what you asy to thea. If such thinge exise 1 have
(Everybady day: that of course what ve went is to be able to comunicate with computere by apeech. Speaking peroonally, $\frac{1}{c}$ certainly don't. Explaining my punctuation tell it to a computer, when it's eany enough to rype to
5. all tocether non

The complexity of the problem should by now be clear
COMPLETE "TaLKivg compurer" (implif.ed)

CYBERNETICS
Gordon Pask calls his field Cybernetics The term "cybernetics" is heard a lot, and is would be better off without; although after talking to pask ifget the sense that there may

The term "cybernetics" was coined by Nor emarician who (according to legend) often failed to recognize his own children. Wiener did pioneering work in a number of areas. A special concern of his was the study of thing
which are kept in control by corrective measures, or, as he called it, Feedback. The term "cybernetics" he made out of 3 Greek word for steersman, applying it to all processes which involve corrective control, It turns out that almost everything involves corrective control, so the term cybernetics spreads out (The public is under the general impression that "cybernetics" refers to computers, and the computer people should be called "cyber neticians.
can be done about this. See "cybercrud, pan 8 . This is an even worse term meaning "steering people into crud," specifically,
putting things over on people using computers

Properly, the core of "cybernetics' seem to deal with control linkages, whether in automabiles, cockroaches or computers. How (and so on) appear to extend the concept generally to the study of forms of behavior and
adaptation considered in the abstract. The adaptation considered in the abstract. The
validity and fascination of this work, of course, is quite unrelated to what you call it.
the turing machine
s the most classical abstract Automaton Turing Hachine, named after Its discoveror te recording tape that it can move back and forth, and the abillty to make docisions deending on that's written there.

Turing proceeded to polnt out that no tter how fast you go step-by-step, you can't ever outrun certain restrictions built inta all sequent lal processes as represented by the Turing Hachine. This lays heavy limit on what can ever be done step by step
computer. (is means we have to look fo nomp-step-by-step methods, which much of non-step-by-step methods which much
Artiflelal Incelligence is about.)

Do wh whit taixtme systens?
1 had one quite 1 rritating exper fonce orith a

 perience thoroughy irritaring. Ny. Ade of the con-
veriation, wich 1 incerely trited to keop olople, produced repeated apologien and confurion troe the progras. The guy who'd crested the prograin kept ex
plaining that the progran would be foprovad. or that eventually it could handle reppons
My renction wea, and 10, hion neesde it?

Many people 1 the coaputer field teen to think
Mat to be able to talk to computers and have them
ve vant to be able to talk to computers and have them
calk back to us. This is by po means a gettied anter.
Taiking prograns, are complicatad and require require a lot of tine by programera wo could achieve
(ithink) more in leas the by other means. Horaover, (1 think) wore in leas time by other mesns. Moreover
telkink progrant produce an irricating strategical talking progrant produce an irricating atrategical
paradox. In dealing with huran beting., ve know that
ve're dealing vith, and can adjuat what ve say accord

 atranger who say or may not turn out to be your now boat.) Nov, acose progranoer, keep asying that evencually they'11
have it acting funt an emart as a real perion, do ve needn' adjuat; but that's ridiculous. We aluayg adjuat to real people. tn other vordg, the human dircomfort and irrita-
tion of payching the gystem put can never be elininated

Furthersore, on today's aequent inal equipaent and
feasible budgets, 1 personaily Ith feasible budgets, I personally think the likelihood
 computer aystens what
choice, for exsmple.

Moreover, having to type in whole Engliah phrasez
be irritaciag. (We can't even get into the problet can be irritating. (We can't even get into the problem
of having the coapurer pick apart the sudio if you talk it in.)

This ie not to any underatandably reatricted calking

 ice p. 15) had an eloquent message:

eh?

Slatiarly, talking systens that une an exact vocabulary, whose Liaite and abilities are known to the person,
are oky. (Winograd, gee Bibiliography, has a nice example of telling a coaputer to etack blocks, where the syater
knows words 1 ke betuen, on, above and so on.) Where knows words 1 ke bet ween, on, above and oo on.) where
this 15 understood by the human, it can be a genvine con-
venience rather than a spurious one.
(The problem of
rudeneas
in computer dialogue has not
This is
partly because sany progranmers are not fully aware of 1 t , or, indeed, asme sre 80
okilied 1 n certain subcle forms of rudeness they wouldn't cain cypes of putdoun, poke, peremptoriness and fimportunacy can find their uay into computer dialogue all too easily. r. to put it enother vay: nobody 11 ke to be talked back to
Cf. Those stupld green THANK You 1ights on automatic toll (oothn.) stupld green THANK YOU lights on automatic coll

How, this 14 not to ary that research in these areae
a wrong, of even that reasichers, hopen of some break1s wrong, of even that researchers' hopen of some breakhrough in talking-nystens is minguided. I am saying,
besically, that calking ayacems cannot be taken for grant ed an the proper goal in conputers to be used by people; that the probleas of rudenesut, and irritating the heoman vore, are far greater than many of these reasarchers sup-
pose; and chat there may be alternatives to thin potentially eternal leprechaun-chaning.

If 1 ike the author you are bemused by the great difficulty of getting along with human beings, then the creation of extraneous berngs of impenetrable character
tith vaguely human qualities can only alarw you, and the prospect of these additional crypto-entidies which ust be fended and placated, clawing at ue from their iches at every turn, is both diatagteful and alaraing -
Artificial intelligence enthusiants unfortunately
end to have a angician's out look: to make clear how heir thinga work would spoil the show

Thus, for a rather peculiar art thow held at New arge device that stacked blocks under control of a could stack and re-stack blocks with, the fact that it was really quite an accompisahment, but this was not

Instead, the block-stacking mechanist vas enclosed ittle zodents-- were free to wander about. When a ger bil aan that a block vas about to be stacked on him, he
would senibly move.

Now, it is fairly humorous, and not cruel, to put offered wo the pubkic as a device partaking of and far lobal alasion, the experimental interaction of living creaturia and ah blah.

Pazaersby ware awed. "Why are chooe animals in there?" one would say, and the more informed one would
urually ady. "It's some kind of exientific experiment."

Well, this is a twilight area, between science and humoroue thing: could be presented with their simplicity and humor laid bare.

I ratember watching one gerbll who atood motionioss Grappler rearranging his world scrutable, but I had t sense that he vat vorshipling it.
us did not gove untit the block started coning down on top

[^0]can a conputer play chess
The real question in can at ast of procedures
And the anaver is yel, fatirly well.
Now, ehese progras in not oomeching you got,
on the beck of en envelope one afcernoon. it usumily an tmente, convoluted thing that people have worked on for yeara. (Although I vaguely recall that
tecond place in the 1870 inter-computer cheal contean oecond place in the 1070 inter-computer chear conteat in a 16 -bit winicomputar--in other worda, a compmet and tricky sneaker.)

Now, staple gamea (ifke tic-tac-toe and Mim and nativeo can be examined by the progran and the beat found. Not so vith chess-

Chess banically invoiven, becaume of 16 very
 the posoliblities of a midgane would take forever
(perhaps Mteralig- the Turing problew), and thu meane muat be found for diacarding some possibilitien

The atructure of branching posiblitien in
(sea p. 26): so that methode of "pruning" the tree (aes p. 26): so that m.
tree turn out to be cruclal.

Banically there are two approaches to the deaign of chess programs. In one approach, the programaris
look for apeciftc threats and opportumities in the data scructure representing the board, and try to find good atrategies for selecting good moves on the basin
of then. This is the approach taken in cooko, the Cooper-koz"chess program. The programmers aelectively
cope $v i t h$ individual problema and stratesfeas as they turn out to be neceasary. (This likely to have specific Achillea' heels; which, of course, the authors of the program keep trying to re-
pair by adding specific corrections.)

A different approach ia taken by the greenblat chesa progran. This it basically a big Heuristic prog-
ram. It "learne" best atrategies in cheas by "watching" the game. That fas, your pour historical cheas matchea
through it, and it tries out strategies-- sakin wartous tentacive rules about what kinds of moven are good, then scoring these moves according to the resulta of making
them- as seen in positional advantages that resulted in actually championahip play.

Obviously this is a field in ieself. You won'e get grants for 1 t , but to those who really care about bot
chess and couputers, $1 \mathrm{t}^{\prime}$'s the only thang to be dolng. frankenstein agets cybercrud

Fred Brooks, the keynote apesker ot the IEEE cou puter conference in fall 74, seess to have aald that
HAL 9000 (the unctuous, traitorous presence movis 2001) was the way coaputers ahould be. (Computer
Decieitions. Apr 74,4 .)

I find it hard to believe that anybody could think gence freaks whose vteu it is that the this 18 eventually (a) to create servants that will read
our mind and do our bidding, (b) aervants who will take our mindm and do our bidding, (b) envants who will take
thinge over and will implement human worality, zegardless things over and vill implement human moxality, zegardles
of our bidding (though we humane are to frati to do so-as in Asimov' I , Robot): or even (c) create maters tho
will take everyting over and run everything according to $\frac{\text { their own principles and the hell with us. (I met a man }}{\text { in a bar. after an Acm meetins }}$ In a bar, after an ACM meating, who claimed co belleve
this was the purpose of it all: to create the magter this was the purpose of tit all: to create the master race
that would replace us.)

According to Arthur C. Clarke's retroactive novel
$:$ A Space odyssey (Signet, $1968,95 \%$), the HAL 9000 $\frac{2001: ~ A}{A} \frac{\text { Space }}{\text { computer } \frac{\text { odyssey }}{\text { series began }} \text { (Signet, } 19}$

In the 1980s, Minsky and Good had shown how neural
replicated-- in accordance automatically-s se
learning patterr. Artificial brains could be grown
by a process strikingly analogous to the developmen
of the human brain." (P. 96.)
I Jon't know who Good is, but these are among the lines Minsky has been working along for years, so 1 hope he's

Anyhow, so okay they grow the HAL 9000 in a tank.
n how come in the Death-of-Hal scene we see Keir Dull Then how come in the Death-of-Hal scene we see Keir Dullea obbing around loosening circuit cards, just as if it

Petro-novel was Clarker's rebuttal to Kubrick's final film
Possible answer "2, HAL's tanks of neural glop are
rolled by PDP-11s, one to ard
(Of course, if you take the letters after H, A and L
in the alphabet, you get I, B and M. So maybe those are 1130s.)
the three laws of robotics
1-- A mobot may not injure a human being, or to harm.

1-- A robot mumt obey the ordera given it by human beingi except where such ordera would conflict with the pirst Law.

3-- A robot must protect the own existence as the firat or Second Law.

Sanelines All wit Noed I A Su-p thelice Elitype

ELIZA WILL SEE YOU NOW

(What the Eliza program eypea, we represent as all caps
what the person typea is not.) piense tzll he your problem.

TELLL Ever mince my mother left.
please cather in very strict.
WHAT WOULD IIght IT dreamt he spanked me.
DIdn't you aver get apanked?
WE WERE DISCuSSTMG you, NOT ME.
You're juat a dumb machine anyway
DO COMPUTERS FRIGMTEN You?
(quoted in Winograd, 74-5)
The tascinating thing about the ELIzA program In analyat of the nondirective, Cari Rogers nchool.

But all it is is a bag of tricks.
It has a lot of canned phraze
ke plense tell me your problem.
Then it spots certain types of sentences and turns them around. If the person typon a sentence beqinning with
II am...", the ELIzA program turns it around with HOw LONG HAVE Your benn...?

And it looks for spectific words which indicate a sentence can be turned around for a convincing result. Yor in stance, if the perion ubes the word "everyone," the
simply replies, who in particular can you think or?

And certain highly-charged words are signals to throw in a zinger, zegardleas of what the user may have said. Por in stance, if the persion usea the word "mothor," the machin
tell ne nbout your fanily.
Now, do not be fooled. There ia no chost in the Machine. The program does not "understand" the uner.
THE procran is merely ncting our the bng of trjcks that JoE WEIzENBAOM THOUGHT UP. Credit where credit in due: not to The Computer's cmniscience, but to Weizenbaum's (Look at the above rample dialogue and see if you
that tricks the program vas using.)

The thing is, many people refues to believe that it'a
agram. Even when the program's tricka are explalned.
And even some who underatand ELIzA like to call it up
their terminala for companionship, now and then. bibliography

Terry Winograd, "When Will computers Understand People?"
Paychology Today May 74,73 .
(Woizenbaun's full articie on ELIzA appaared in the

1 have strong hunches about the inner work ings of men who get millions of dollars from the that really they're going to use it to create a machine so intelligent it can play with their ohfldren. (Not to name names or anything.) An chious question is. do they play with the
children? No. they play with computers.

But the point here is not to hassle the dreamers, just to sort out the dreams and put them on hangers so you can try them on
maybe choose an ensemble for yourself.

deus ex machina

Obviously auch beliefg are outaide the realm of cience or engineering. They belong to pure speculation; and while various mechaniams have in fact been programmed
to crosk, Atagger, stack blocka, compoase sentences and so on, to suppose that we sre in sny real sense anywhere nea imicking huan intelligence, let alone aurpasaing and
uperseding it, is ticher to be totally fooled or to hank after oome curious dream frou inside yourself.

As we asid on the other side of the book, everybody in orm his oun special tiea to these machines; and when it comea to our choicen of fancasy machines, obvipusly an even deeper leval of paychic imprint is projecting itself into
the vorid.

. . Ex measa

People who fantanize ebout wondroua creaturea and deitien they sereating in their cum coaput or obvioully have sonethiag in it coace from a denire for ianginary playmaten, or an amblvalence toward authority, or goodnem: knows what; thert are ao
many odd people at diffarent ende of Artilicial Incelligence
that there at work. Or maybe artificial intelligence is patical syatema

bibliography
erry Hinograd, "When Will Computers Underatand People?
Paychology Today May $74,73-79$
Pariticularly readable article.
Hicholas Negroponte, The Architecture Machine. MIT Prese

angical servanta vhich not only handle bothernome
onard Uhr, Pactern Recognition, Learning and Thought
Computer-Programed
arthur H . Holt. "Algoritha for a Low Cost Hand Print
Reader." Computer Dealgo Yeb 74 , $85-99$.
Reader. Compucer De日lgo $\frac{\text { Ceb }}{}$.
$\frac{\text { Couputers }}{\text { old but }}$ and $\frac{\text { Thought. }}{}$ McGraw-HIN1.

Ancterdaux, The Netherlanda. Waal \$26.50 a year in 1973.
Thid'll show you that they're thinking about now
tind, "The koboth Are Coalag, The Robots Are
Coning." onid. Feb 1974. You don'e get told unt 11 the
Typical 1ayman' 4 hype.

huge mechaniat with one grappling ara.

Greenblatt, R.D., Eastlake, D.E., and Crocker, S.D. © "The

INFORMATON RETREVAL

"Information Retriteval" if one of thone teras
that laymen throu sround at if it were a menhole
 Deh. And so you actually hear people say thingo 11 ke
"But that would mean... (pregnant pauge)... Informat tion Ratrieval!:!" similarly, soose of the hokey nev copyright notices you ese in booke frow with-It publinh-
ery intone that anid booke way not be "placelin any information retrieval ayatem..." I cake thin to mean that the publishere are forbidding you to put the book on a booknhelf, because "inforantion retrieval" simply aeane any way at all of getting back information from spliseas of the books, In Indeed an Information Retrieval system.

It happens, incidentally, thac the phrase "Inforwation recrieval" wan coined in the fortios by Calvin Mooers, had coined 1t he aight have called it Getback. If Diebold had coined it it wight have been Thoughtomation.)

Anyhow, numerova entirely different things go on in che field, all
Here are some.

1. Hon-computer retrieval. (See Becker and Hayes,
 edge, for instance, that you sort with knitting needies, or the more recent syotena with holea drilled in plastic cards. Trouble is, of course, that computers are becoming

2. Document Retrieval. This batically is an approach that glorifies the old library card file, except now the atuff is scored in computera rather than on cards. But that s atored ie still the name of the document, hoio it, where it was pubiched, and aitin.
to librariana, bur ecarcely exciting.
3. Automatic document Indexing. Some organizatione find it helpful to have a computer try to figure out what a book is about: rather than have a person look at it and check. (I don't see uhy this saves snything, but there you
are.) Anyway, the text of the document (or selected parta) are poured through a computer program that gelecta, for inEtance, keywords, that is, the most important words in it, or rather vords the program thinks are most laportant. Then thase keywords can go on the heading of Ifbrary file cards, or vhatever.

There are varioue related syatems by which people atudy, for instance, the
we mon't get into that.
4. Content $\frac{\text { recricyal. Now ue're getting to the sexy }}{\text { for }}$ stores information in a computer and lets you get ic back

The trick on both counte is of course how
Well, as ve said on the other side of the book, any Information stored in a computer has a data structure, characters, numbers and special codes the computer happens to be saving.

In a content-retricval syates, information on some ubject is aonehow jamed into a data arructure- poasibly it back out again tn some way. Lot of possibilities here, get 1 t ?

In the most startling of theae systems, the Qas, or "(question-Answering System," some sort of dialogue prograia
(are "Artificial Intelligence," nearby) tries to give you (see "Artificial Intelingence," nearby) tries to 8 ive you
ansuers about the data siructure. But this means chere ansuers about the data atructure.
have to be a whole lot of programa:
 These syatena can be quite atartling in the vay
they aeem to underatend you (Gee tickider book; alao Winograd plece under Artificial Intelligence). But they
don't underatand you. They are just poor duab programa.

Many people (Including lick11der) seem to see in Queation-Anowering-systems the wave of the future. Others, like this author, are okeptical. It' © one thing
to have a syatem that can deduce that Green's House is to have a syatem that can deduce that Green's House is
Weat of Red's Hoube from a bunch of input aentences on Weat of Red Houne from a bunch of taput sentences on
the sub ject, but the question of how much thene can be taproved 1s in some quebtion of how muth thene can be queation, "What did Hegel say about determinism?" io gome waye auay, to put it alldiy.

Then there ta matter of consistency. The really interesting subjects are the ones where different author In other words, there is fuconsistency within the content In other words, there is inconsistency within the content
of the field. In this case such systema are going to have a problen. (See "Rasho-Mon Principle" under "Tisaue of a problen. (See "Ras
Thought," of ${ }^{\text {M }} 16-19$

Another fundamental point ia this. It may be easy
enough to program a system to ansuer the queation,
hat time does the next plane leave for laguardia? but it is a lot slapler tondirplay schedules your eye can run down, or allow you to $\hat{\mathbf{g o}}$ look at some kind of graphic diaplay.

Speaking personaliy, 1 don't like taliking to machines and 1 don't like their talking back to me. I'm not saying feel that way.
5. Screen surmaries. These syatens let you sit at 5 computer display screen and read suremaries of various things, as well as run through them With various programs
to look for keywords. (The Neu York Times nou offers such to look for keywords. (The Neu York Times nou offers such ocribers.)
6. "Full-text systems." These are systems that one way or another allow you to read all the text of
gomething from a computet display screen. There are something from a computet display screen. There are
those of us who see these as the wave of the future, but many others are perfectly outraged at the thought (Hypertext systems, now, are setups that allow you to tead $\frac{\text { interconnected }}{\text { ppext }}$ tex from computer display screens

This has been brief and has skipped a lot. Anyway as you see, IR ta no one thing.

bibliocraphy

Vannevar Bush, "As We May Think." Atlantic Monthiy. July 1945, 101-108.
eodor H. Neison, "As We Will Think." Proc. Online 72
Conference, Brunel U. Uxbridge, Englan Conference, Brunel U. Uxbridge, Engiand.
G. Saltoa, "Recent Studies in Automatic Text Analyais
and Decument Retrieval." JACM, Apr 73, $258-278$.

Done1d E. Walker (ed.). Interactive Bibliographic Search
 Schechter (ed.), Crit1que of of Our System. In
(Thompson Books. 1967).
 field; then he goes on to advocate "procognitive aystems," systems that will digest what's known in any fleld and talk back to you, using techniques of artificial intelligence.
For shaking people espectaily book is great
Eor shaking people up, especially librarians. It
seems so official.
Richard M. Laska, "All the Newis That's Fit to Retrieve. Computer Decisions, Aug 72, pp. 18-22.
> t is a truism that mendel's theories of genetics got "lost" after publicat lon if
1865 , to be rediscovered $\ln 1900$. "If only there had been proper information retrieval under the right categories," people often say. Recent studies indicate that the publication containing Mendel's paper reached, or got nearly to,
"practically all prominent biologists of the mid-nineteenth century." (Sclentlfice
American. July 68,55 .)
> take this as suggesting that the prob lem isn't categerical retrieval at all. "nypertext." pp.jmy 4 y-7.

COMPUTER-ASISTEI INSTRUCTION

Like Artificial Intelligence and Information Retthing exact ond inpreselve but is in fact acatiering of techniques died topether only nominally by acatering of

The real name fcr it should be Autosated Dislogue computer teaching une dialoguen? But they don't want you to ask that.

In the cianicic formulation of the early sixties, there ere going to be three levels of CAI: "drill-and-practice" aysteas, wuch like teaching manines, that slaply helped thaelf called, confualngly. "compurer-asaisted fnotruction") and a third level, the Socratic ayatem, which would eupposediy be Ideal. Studenta studying on Socratic ayatemi would be
eloquentiy and thought fully inotructed sad corrected by
 yet." the people keep alaying. Yet, indeed.
(My personal viev on this subject, expressed fo an arcicle (following) is that computer-Assiated Inatruction in many into the new realm of presentation by computer.) now know it

does the name paviov RING A BCLL?

This is a true story. (The detafls are approx-
imate.) It may provide certain insights. tain insights.

An Assistant Commissioner of Education was
shown a CAI system by representatives of a being shown a cal system by representat
large and well-known computer company.

One one side of the Commissioner stood a salesman, who wanted him to be impressed. On the oth
side stood one Dr. S., who knew how the system worked.

The terminal, denonstrating a history program
had hurriedly been put together, typed: wo that had hurriedly been put
CAPTUREO FORT TICONDEROGA?
"Can 1 type anything?" asked the Assistant
"Sure," said the salesman, ignoring the frant head-shakling of or. s.

Lee.
The Assistant Commissioner typed: Gypsy Rose

The machine replied
no, but you're close. he captured quesec a Short time later.

The Assistant Commlssioner evidently enlivened many a luncheon with that one, and Computer-Assisted instruction was effectively dead for the rest of the adminlstration.
2. "Full cat-

1. DRILL-AND-PRACTICE

(Whereas in Ayperfexth the text maze
shant wot te a seeret. See pr. DM 44-7)
shald mot hypertexts the text maze
secret. See pr. DM 44-7.)

another andciote
Sose of us have bean saying for a long time that learning from computers ought to b

One group (never mind who) has taken hold of this idea and gotten lot of funding for it under the name of STUDENT CONTROL. This graup talks as if 1

A friend of mine suggesta, however, that
this phrase may have brought the funding because administrators thought it meant control of the studane.

IBLIOGRAPHY

George b. Leonard, Education and Ecstasy
education an enthusiastic process
Theodor H. Nelson, "No More
Dirty Looks." Follows.
(The following article appeared in the September. 1970 issue of Computer Decisions, and got an extraordinary amount of attention. I have changed my views somewhat-we all go through changes, after all-- but after consideration have decided to re-run it in the original form, without qualifications, mollifications or anything, for its unity. Thanks to Computer Decisions for use of the artwork by Gans and for the Superstudent picture on the cover, whose artist unfortunately insists on preserving his anonymity.

Did you find school dismal and dreary? Did it turn you off?
Here the author proposes safe and legal ways to turn kids on.

by Theodor H. Nelson

The Nelson Organization
New York
Some think the educational system is basically alt right, and more resources would get it working again. Schools would do things the same way. exeept more so. and things would get better.

In that case the obvious question would be. how can computers help? How can computers usefully supplement and extend the traditional and accepted forms of teaching? This is the question to which present-day efforts in "computer-assisted instruction" - called CAI - seem to respond.

But such an approach is of no possible interest to the new generation of critics of our school system - people like John Holt (Why Children Fail), Jonathan Kozol (Death at an Early Age) and James Herndon (The Way It Spozed To Be). More

No MORE tEACh:

and more. such people are severely questioning the general framework and structure of the way we teach.

These writers describe particularly ghastly examples of our schooling conditions. But such horror stories aside. we are coming to recognize that schools as we know them appear designedtay every level to sabotage the supposed goals of education. A child arrives at school bright and early in his life. By drabness we deprive him of interests. By fixed curriculum and sequence we rob him of his orientation. initiative and motivation, and by testing and scoring we subvert his natural intelifgence.

Schools as we know them all run on the same principles: iron all subjects flat and then proceed, in groups, at a forced march across the flattened plain. Material is dumped on the students and their responses calibrated; their interaction and involvement with the material is not encouraged nor taken into consideration, but their dutifulness of response is carefully monitored.

While an exact arrangement of intended motivations for the student is preset within the system, they do not usually take effect according to the ideal. It is not that students are immotivated, but motivated askew. Rather than seek to achieve in the way they are supposed to, students turn to churlishness, surliness, or inteliectual sheepishness. A general human motivation is god-given at the beginning and warped or destroyed by the educational process as we know it: thus we internalize at last that most fundamental of grownup geals: just to get through another day.

Because of this procedure our very notion of human ability has suffered. Adult mentality is

An interesting point, incidentally, is that people read this a lot of different ways.
One Dean of Education hilariously misread it as an across the board plug for CAI. Others read in it various forms of menace or advocacy of generalized mechanization. Onc letter-writer said I was a menace but at least writing articles kept me off the strects. Here is my fundamental point: computer-assisted instruction, applied thought lessly and imitatively, threatens to extend the worst features of education as it is now
cautcrized. and we call it "normal." Most people's minds are mositly turned off most of the time. We know virtually nothing of human abilities except as they have been pickled and boxed in schools; we nced to ignore all that and start fresh. To want students to be "normal" is criminal. when we are all so far below our potential. Buckminster Fuller, in I Secm To Be A Verb, says we are all born geniuses: Sylvia Ashton-Warner tells us in Teacher of her success with this premise. and of the brilliance and creative potential she was able to find in all her schoolchildren.
Curricula themselves destructively arrange the study situation. By walls between artificially segregated "studies" and "separate topics" we forbid the pursuit of interest and kill motivation.
In ordinary schooling. the victim cannot orient himself to the current topic except by understand-

3s'dirt L LOOks

ing the official angle of approach and presentation. Though tic-ins to previous interests and knowledge are usually the best way to get an initial sense of a thing, there is only time to consider the officially presented tie-ins. (Neither is there time to answer questions, except briefly and rarely well - and usually in a way that promotes "order" by discouraging "extraneous" tie-ins from coming up.)

The unnecessary division and walling of subjects, sequencing and kibbling of material lead people to expect simplifications, to feel that naming a thing is understanding it. to fear complex wholes: to believe creativity means recombination, the parsing of old relations, rather than synthesis.

Like political boundaries, curriculum boundaries arise from noticeable features of a continuum and become progressively more fortified. As behind political borders, social unification occurs within them. so that wholly dissimilar practitioners who share a name come to think they do the same thing. And because they talk mainly to each other, they forget how near is the other side of the border.

Because of the fiction of "subjects," great concern and consideration has always gone into calculating the "correct" teaching sequence for each "subject." In recent years radical new teaching sequences have been introduced for teaching various subjects. including mathematics and physics. But such efforts appear to have been misinformed by the idea of supplanting the "wrong" teaching sequence with the "right" teaching sequence, one which is "validated." Similarly, we have gone from a time when the instructional sequence was a balance between tradition and the lowest common denominator of each subject. to a time when teachers may pick "flexible optimized strategies" from text-

If the computer is a universal control system, let's give kids universes to control.

- Conduciventess to boredom:

The removal of opportunities for initiative: - Gratuitous concerns, both social and administra tive ("subject," "progress" in subject):
riety, and willingness to focus on cont anxicty, and willingness to focus on core emphasis student (the "Now-Johnny" box in the computer re placing the one that sits before the class) for "results" at the expense of motivation and general. for "results" at t

- Destruclive resting of a kind we would not permir on delicate machinery, and,
Ungraded schools are nice-but how many units did The complete today?)
the effects of resting. In the tell-test, tell-test natterin of efar the testing becomes merely an irritant but on certainly not likely to foster enthusiasm.

But isn't CAI "scientific?'
Part of cai's mystiyuc is based upon the idea that laching can becially learning theory it is understand escarch, especially learming theory. It is understand-
ahle that rescarchers should promote this view and that others should fall for it.
"Laymen do not understand. nor are they told. that "learning theory" is an extremely technicial, niouthematically oricnted, deseription of the behavior of abstract and idealized organisns learning non-unified things
under specific conditions of motivation and non-disunder specific conditions of motivation and non-dis${ }_{\text {raction }}$
Let us assume, politely, that Icarning theory is a
ull and consistent hody of knowledge. Because of its full and consistent hody of knuwledge. Because of its
name, learning theory has at least what we may call name, learning theory has at least what we may call
nominal relevance to teaching: but real relevance is nominal relevance to teaching: but real relevance is
another matter. It may be relevant is Newtomian cyuations are to shooting a good game of pool: inplicit but without practical bcaring.
Because of the acluail character of learming theory. and its general remoteness from non-sterile conditimens,
actual relevance to any particular type of applicationn actual relevance to any particular type of application must sitl be demonstrated. To postulate that the theory still applies in difuted or shifted circumstances is a leop of faith. Human beings are not, taken all ingether.
very like the idealized pigeons or rats of learning scry like the idealized pigcons or rats of learning theory, and het easily controlled. Studies concerned with rate are not easily controlled. Studies concerned with rate of the student hates or does not understand what he is doing.
I do not meath twatach all (at, or inve teachme ystem which is sllective :and gatiliging. What I deth
 ing luturial oytem, is reachable and appopinitic. And fil wilter but sap incellectual interest in the same old welp.
Should syatems 'instruct?'
Drill-and-pratice sphem, we detintely a gexd thing for the acequisition of shilh athl revponse seis, and improvemont over workbook, and the like, Gurnishing both corrections and audewtment. They are horinge hut
probably less so than the unatal makerials. But the oat probably leas so than the unal makerials. But the eal chunk technigucs can tee cextonted to the readm of ideas. to systems that will tutor and chide, and that this witl provide the same sort of nutural interest provided by live tutor's instruction.
The conventional point of view in cat claims that because validation is so important, it is necessary to have a standardized formint of item, sequence and dia-
logue. This justifies turning the endeavor into pickyork within iems, mu whe comples, with attendant curncular frecze, and wulent inithition and
guredum. This is entircly premature. The varicty of ulternative systems for computer teaching have not even begun to be explored. Should systems "instruct"

Responding Resources' and 'Hyper-Mectia'

At no previous time has it twen pusible to ereale earning resources so responasive and interesting. or to give such free play to the student's initative as we may wonderlands, where a student (or other wer) browse and ramble throueh al vasl varicty of writing pictures and apparitions in nobgical space, as well ia rich data structures and facilitiev for twiddling then These we may call. collectively. "responding ressurces"
Reaponding resources are of two types: facilities and Responding

A feiliay is something the user may call up to perin tesired ways on demand. Thus soss fa clever des calculaker availibible at at terminitl) and the (uller-Freed

 arranged words ind pictures (for example) which mas
 drawn and edired, hy authors, artivks. tesigners and surious To eill them programer eytem in suggel then will he "proigramed") like ordenary prowe and pictures. they will he mecdin: :nd thecaus they are in ome sense "multi-dimenvional." we may ciall thent
hoper-media. following the mathensatical use of the term "hyner-"

A mondekt proposal
The allernative is straightorward. Instead of devis ing elaborate systems permitting the computer or its not permit the sudent to control the system. show him how to do so intelligently, and make jt easy for him to find his own way? Discard the sequences, items and conversation, and allow the student to move freely
through materials which he may controt Never mind through materials which he may contro. Never mind quences. Motivate the user and let him loose in a wonderful place.
Let the sludent control the sequence, put him in letl good-comfortable. interested, and autonomous leach him to orient himself: not having the system answer questions, all typed in, but allowing the student
to get answers by looking in a fairly obvious place. (Dialoguc is unnecessary even when it does not in to choose what he will study, when he will study it and how he will study it, and to what criteria of accomplish ment he will aim. Let the student pick what he wishes to study next, decide when he wishes to be tested. and give him a variety of interesting materials, events and opportunities. Let the student ask to be tested on what he thinks he knows, when he is ready, selecting the most appropriate form of testing available.
This approach has several advantages. First, it cir cumvents the ineredible obstacles created by the to students of bugs in the material. And last, it does what education is supposed to do-foster student enthusiasm, involvement, and self-reliance.
Under such circumstances students will actually be interested, motivated to achieve far more than the have ever achieved within the normal instructional framework: and any lopsidedness which may result whill be far offset by the degree of accomplishment which will occur-it being much better to create lopipathetic, or cruelly rebellious medincrities if they start soon enough they may even reach adulthood with latural minds: driven by enthusiasm and interest. crippled in no areas, eager to learn more, and far marter than people ordinarily end up being.
Enthusiasm and involvement are what really count. This is why the right to explore far outweighs any
administrative advantages of creating and enforcing "administrative advantages of creating and enforcing "subjects" and curriculum sequences. The enhancement of motivation that will follow from letting kids learn
anything they want to learn will far outweigh any anything they want to learn will far outweigh any
specialization that may result. By the elimination or specialization that may result. By the elimination or
benign replacement of both curriculum and tests in an ultra-rich environment, we will prevent the altrition of the natural motivation of children from its initially natural straight diagonal rather than the customary parsbola.

Is it so hard? some ideas
CAI is said to be terribly hard. It would seem all the harder, then, to give students the richer and more
stimulating environments advocated here. This is te cause of the cramped horizons of computer teaching loday. Modest goals have given us modest visions, far below what is now possible and will soon be cheap

Discrete (Chunk Style) Hypertexts

The static computer displays nuw assuiated with cal will give way to dynamic displays driven from minicomputers, such as the IDtiom, 18 m
Imlac pos-1. (The last of these cosis only $\$ 10,000$ Imlac pos-1. (The last of these costs only $\$ 10,000$ noms by 1975 such a unit will probably cost $\$ 1,000$
or less.) Not only will computers be much cheaper, but or less.) Not only will computers be much cheaper, but
their usability will improve: a small computer with a their usability will improve: a small compuru more
fair amount of memory will be able to do much misplay fair amount of memory will be a
than it can now, including opera.
from its own complex data base.
It is generally supposed thut systems like these need big computers and immense memories. This is not
true if we use the equipment well, organize storage cleverly, and integrate data and display functions under a compact munitor. This is the goal of The Neison handie all the functions described here on a minicomputer with disk and tape.

Discrete hypertexts

"Hypertext" means forms of writing which branch or perform on request; they are best presented on computer display screens.

In ordinary writing the author may break sequence for footnotes or insets, but the use of print on $\mathrm{pe}_{\mathrm{f}}{ }^{r}$ makes some hasic sequence essential. The compu. display screen. however, permits footnotes on footnotes on footnotes, and pathways of any structure the author wants to create.

Discrete, or chunk style, hypertexts consist of separate pieces of text connected by links.
Ordinary prose appears on the screen and may be moved forward and back by throttle. An asterisk or other key in the text means. not an ordinary footnote, but a jump-to an entirely new presentation on the screen. Such jumpable interconnections become part of the writing, entering into the prose medium itself as a new way to provide explanations and details to the seeker. These links may be artfully arranged according to meanings or relations in the subject, and possible tangents in the reader's mind

Performing hypergrant

A hypergram is a performing or branching pietur: for instance, this angle, with the bar-graph of its related trigonometric functions. The student may turn the angle upon the screen, seizing it with the Jight-pen, and watch the related trigonometric functions, displayed as bar charts, change correspondingly

Hypergrams may also be programmed to show the consequenees of a user's prod-what follows or ac companies some motion of the picture that he makes with a pointing tool, like the heartbeat sequence.

Stretchtext fills in the delails

This form of hypertext is casy to use without getting lost. As a form of writing. it has special advantages for oiscursive and loosely structured materials-for instance historical narmative

There are a sereen and two throtles. The first throtle moves the cext forwiral and bachward. up and down on the sereen. The second throtte causes changes in the writing itself: throthing toward you eatuse the text to becone long. - by minute degrees. Gaps appear between phrases; na w words and phrises pop into the gaps, an item at at lime. Push bach on the throtle and the writing becomes shorter and less detailed.

The stretchtext is stored as a text stream with extras coded to pop in and pop ant at the devired altitudes:

Hypermap zips up or down
The screen is a map. A sleering device permits the user to move the map around the world's surface: a throttle zooms it in. Not by diserete jumps, but animated in small chatnges, the map grows and grows in scale. More details appear as the magnification inereases. The user may request additional display modes or "overlays," such as population, climate, and industry. Such additional features may pop into visw on

Queriable illustrations: a torm of hypergram
A "hypergram" is a picture that can branch or perform on request. In this particular example, we see on the screcn a line-drawing with protruding labels. When the student points at a label, it becomes a sliding descriptive ribbon, explaining the thing labelled. Or asterisks in an illustration may signal jumps to detailed diagrams and explanations, as in discrete hypertexts.

The student of anatomy may use his light-pen as a scalpel for a deceased creature on the screen. As he cuts, the tissue parts. He could also turn the light-pen into hemostat or forceps, and fully dissect the creature -or put it back together again. (This need not be a complex simulation. Many key relationships can be shown by means of fairly simple schematic pictures, needing a data structure not prohibitively complicated.)

Iyper-comics are fun

Hyper-comies are perhaps the simplest and most straightforward hyper-medium. The sereen holds a comic strip, but one which branches on the students request. For instance, different characters could be used to explain things in different ways, with the student able to choose which type of explanation he wanted at a specilic lime

"Teclmicality' is not necessary

Proponents of cal want us to believe that seientific teaching requires a certain setup and format, incomprehensible to the layman and to be left to experts. This is simply not true. "Technicality" is a myth. The problem is not one of technical rightness, but what showld be.

The suggestions that have been given are things that should be; they will be brought about.

20

It was explained on the other side that computers have no fixed purpose or style of operation, but can be set in motion on detalled terest-- as long as those tasks are exactly specifiable in certain humdrum ways.

Now, if you had a machine like that burning a hole in the comer of your office. what would you really want to do with it?

You can't drive it on the road.
You can't make love to it, (But see p. 品.) You can't cook in it, or get the news on it.

To get it to control elaborate events in the real world requires a lot of expensive equipment and interfaces, so cross that out

Yet suppose you have an jnquiring imag-ination-- which is not unlikely, considering that you are reading this sentence.

And we are also supposing (from an ear-
paragraph) that you have a computer.
What sorts of thing would you do with it?
Things that are imaginative and don't require too much else.

I am hinting at something

YOU COULD HWE IT MAKF PICTURES and show you athf and change what it shows depeniny on what you da;

and if chia idea doesn't sura you on,
the reat of this book 19 probably not

The techniques of making pletures by computer are called computer graphics.

Sut that includes the dull kinds of making pictures by computer, the ones that do it with pens and printing machines

The techniques of making computers present things interactively on screens is called computer display. (Some say "Interactive computer graphics; this in not just too long, but
too restrictive as well: interactive text systems are not "graphic" or pictorial, but they are going to be a protoundly important area of computer diaplay.)
ancidentally, the silly word "interaction" wos coined because the previous word "intercourse," which meant exactly the same thing. had racy connotations for some people. Cf. "donkey" and "rooster," also relatively recent.)

You will note that computer display is what makes possible the computer terminals with screens that we saw on the other side. All puter display, to which a keyboard has been added.

You will therefore see that to underatand al the different computer diaplay terminals you would have to understand all the differen computer display techniques: untortunately we can only cover a few here. and those but sparely.

Some of the types of computer display to be covered hereabouts include:

CRT, or cathode-ray tube, display these are my favorite because the animated by the compurer
video displays, which use television techniques. These have troubles deriving from the way a TV picture is timed.
panel displays, i.e., those which appear on a flat panel. These are going to be cropping up all over. (The pictures can't move much, but the devices are going to be cheap. very important, people think that's
-D displays, especially of the CRT type NOTE: this cerm refers ambiguously present fat yiews of three-dimensional preses hat stereoscopic yiews of 3-D scenes; these are much rarer
image synthesis or halftone techniquea and systems. These are computer programs and special devices which make shaded or photograph-like favorite topic of mine, and so there's quite a bit on it here, a lot of which is not widely known in the field.)

Newman and Sproull, $\frac{\text { Interactive }}{} \frac{\text { Computer }}{} \frac{\text { Graphics }}{1}$) computer graphics (and thus animation).

sage courtesy of R.E.S.I.S.T.O.R.S.
The big display is an IBN 2250 (over $\$ 100,000$, including minicomputer).

DSPAY FRMMIALS

Soae computer displays have to be deenly
theso
 A display terainal is
like an ordinary
ore

Now, some display terninals only show text, just 1ike ordinary printing terainals turers are free to add any other features and
so different wanuacturers make it possibe to do various kinds of pircture-making with the ir particular display rerninals,
programs ane funning in the conputer that con-
trols them.

Sone devices are sold as display terminals contain coppiote minicomputers. (The fact that the manufscturer may not stress this is
simply a marketing angle he has chosen.) Simisimply a marketing angle he has chosen.
larly, certain terminals contain microprocessors (see f. ${ }^{44 \text {) }}$, which means they can be programmed
to behave ${ }^{\text {ike }}$ various other terminals, but ordi. narily they cannot be programed to do much else by themselves.

Without getting into it deeply, there are two main types of display terninal: those that are refreshed and
those that are not. A refreshed display is one whose viening surface fades and must be continually re-filled; in the viewing surface itself. stores the presentation

Non-refreshed displays simply take the symbols from the computer, blam them onto the screen, and that's
it unti1 the screen is erased by cither the computer or

This honay is the gr-40
from DEC
oluding computer-s the

It's a subroutining
dieptay (oes $p, D N$ e
Nan is playing Hoon-
lander game: control-

ing soreen aetion with
lightpen. Computer simuliates rad moon lander
Roveresed white-toblack for readability here.

THE WONDER OF MTERACTNE DISPLAY SPSTEAS

If you have not seen in
display, you have not lived.
Except for a few people who can imagine itand -m trying to help you with that as hard as 1
can-- most people just don't

 adapt. These are some pit ture things watch the rest
that hapt
pent in interative computer display-- all depending, of course, on the program.

For some reason there are a lot of people who pooh-poon computer display they say it's "not
necessary, orp not
just as good results other ways., that you can get

Personally, 1 wouldn't thing of trying to So what if it offers you faster access to infor mation and pictures ynd mass and access to infor ability to sinulate extremely complex things by
nodifying pictures, the ability to go through omplex transactions with the systen through iitlue times the abisility to the seate things in the the
corld almost instantaneousiy (saye by creating fabric patterns which, are then autonatically natically milled by machines), and never auta that it onables the machines, say, and never mind oil refineries by the flick of al cightronenter entire

As far as I'm concerned, these matters vorld: yaking education compared to changing the than a prison; giving scholars total access to poople to and notes, in new complex fornises allowing
pinds to the imaginatively, and raising human long ago; and hotentinis people they should have reached level about very heavy poople think at the deopest
which confromt as

Two major types are the storage tuhe and the pane 1
These in turn have separate subtypes, etc.
Refreshed displays have to have sone other kind of
symoicic (digital) memory, whose contents repeatedof symboric sic the screen:

Most refreshed displays use an actual television screen-. that is, a CRT (see p. pm b-7) whose entire area
is repeatedy re-painted by the elctron beam.

Since conputers send text out to terminals as individual aphabetic and punctuation codes, each terminal must contain circuitry to change the character code to a
visible alphabetical character on the screcn. Such a piece of circuitry is callied a character generator. There
are various kinds. they go at various speds, some offer more different characters than others.

Display terminals generally have a littie marker, or $\frac{\text { cursor, }}{\text { screen }}$, that the user or the computer can move around the screen. The computer can sense what the user is pointing
at by the motion codes it gets, telling where the user has
moved the cursor.

I had intended here to print a 1 irtle directory of
display terminal manufacturers, but there simply is not tine. See section on terminals, other side.

Note that the term video terminal is often used, in correctly for any display terninal. The term video should only be used when the screen is refreshed by an
actual video raster. (See "Lightning in a Dottle," p. $\operatorname{ANG} \cdot \mathrm{F}$.)

Text terminals (also called alphabetic terminals character terminass or keyscopes simply show written text put ented transaction terminals, can be divided up into specific areas that the user may and may not type into-. for banking necessary may also be a matter of taste in the program necessary may also be a matter of taste in the program
design.)

Text terminals range in price fron, say, 51500 on up
6500 . This last is the price of a remarkable color to $\$ 6500$. (This last is the price of a remarkabic color
text terminal demonstrated by Tec, Inc., at the 1974 National Computer Conference. Each alphabetic position could containa letter and/or a bright color; altogether the screen tain a etter andfor a bright coior, atoge ther the screen
could hold big color ful pictures made up of these bright
spaces. spaces. Ostensibly just a text terminal, actually the device could be regarded as an Instant Movie Generator for
television animation. But it may take Tec, Inc. awhile to television animation. But it may take Tec, Inc. awhile to
realize what they have created.)
screens. Thaphic terninals offer some kind of pictures on their screens, These cone in a great variety inine-drawing, some
without, some with levels of grey. of interest to the beginner are:
"The Tektronix." (Also called "the greenie," or display based on a pale green storage tube they make (So does Computer Displays, Inc.) Such
dispiays allow you to put more and more text and displays allow you to put more and more text and pictures on a screen, crowding it all up-ibut
you can't take the lines or words off individually,
"The PEP." Excellent (but very expensive) display solution storage tube. Permits grey scales and solution storage tube. Permits grey scales and
selective erase. Princeton Electronic Products.
The IDIgraf (Information Displays, Inc., Mount Kisco, NY). Allows line pictures with, animation; interest

A PLATO-Iike terminal (see plato terminal, nearby, and Ppphib-2) is now available for use with STANDASD, comfrom Applications Group, Inc.; p.o. Box 444A, Maumee,
refreshed high-resolution color systems. A number of companies manufacture computer displays aliowing com expensive but very very nice. Indeed, if you buy the in clusters, these fancy-picture scopes can cost as little as text terminals. Sone manufacturers are:

Data Disk. (Disk refresh.) Note: I once recommendlater expressed complete satisfaction with their equipment.
 Comtal. (Disk.)
Spatiai Datak Systems. (Disk.)

MEN tT NORR

rontier of our lives display screen ts the new
That such systems should (and will) be hin goea without skying. That they will also e place to work may be leas obvious from here.

Haking pictures with the GE
halftone syetem (oee pp. DM $32-9)$.
The thing about display acreenn-- espectaly the high-performance, subroutining kindis that the acreen can become a place from which to control events in the outside world

Example: 1 believe a lown in N.Y. State has its electrical system hooked up to an iDliom
subroutining display (made by Information Dissubroutining display (made by information Discomputer). Instead of having a wall with a big painted map having switehes set into it, like many such control centers, the switches are linked directly to the minicomputer, and a program in the minicomputer connects these circuit o the pictures on the screen. Thus to throw a switch in the real world, the operator pointa
with this lightpen at the picture of the switch.

There are oll relineries that work the same way. The operator can control hows pletures, or at symbols connected with them, and bingo, it happens Out There.

In another case, a person designing some thing at a screen can loak across the room and see a machine producing what he just finished designing a few tminutes ago. I wish I could say more about that particular setup.

The true problem that I think is emerging though, is the problem o? system response and atyle. Okay, so you're controling widget screen. The real question is, how does the screen behave and respond? This is not, darn it, a technical issue. It's psychological and then some. The design of screen activities which will enjoyably focus the user's mind on his proper concerns-- no matter how personal hese may be-- is the new frontier of design. later

Now, the Xerox Corporation has said that they intend to replace paper (or. the way ! heard it, "Somebody is going to replace paper so let's have it be us.")

Well and good. Save the trees and stem he grey menace. But the question is: what will the systems be like? How should they per
form". What forms will information take? What conventions, structures, diagrams, animations, says to sign thinge, ways to view things HOW SHALL IT BE?
am afraid that as long as people are be uddied with technicalities, or confused by those who profess that chese considerations are their specialty by right, we will never get straight. Lacking time for the full discussion, I give you motto
if the button is not shaped like the thought, the thought will end up shaped like the button.

SAVING ENERGY WITH COMPUTER dISPLAY
A timely criticism of computer display is
that it needs electricity. But (as mentioned bodes to save energy as well.

IF WE SWITCH TO COMPUTER SCREENS FROM PAPER, PEOPLE WON'T HAVE TO TRAVEL AS MUCH. Instead of commuting to offices in the center
of town, people can set up their offices in of town, people can set up their offices in the suburbs, and share the ture of the wituation through the screens.

This view has been propounded, indeed, by Peter Goldmark, former director of the Li record

IF COMPUTERS ARE THE WAVE OF THE FUTURE, DISPLAYS ARE THE SURFBOARDS.

THE MINY'S EYE *, Continued.

your basic types of computer display
(Note: the term "display" is also used in this field to refer to numbers and letters that can be made to light up in fixed positions like on your pocket calculators. Those will not be discussed here. If you're interested see an article on the subject by Alan Sobel, Scientific American, early 1973 sometime.)

THE FORKED LIGHTNING
" Because their words have
forked no lightning they
Do not go gentle into that good night." - Dylan Thomas

The most basic, and yet eventually the most versatile, computer display is that of the CRT, or bottled lightning (as I like to call it) It is, you know: a beam of electrons, just like lightning in a starm, but from the neck of a very empty bottle to its flat bottom, whose chemically coated surface we watch. As manip ulated by the computer, the CRT stabs its beam to all corners of the faceplate: forked lightning

Computer display began in the late forties. Computers themselves were completely new and so was Mr. Dumont's magical Cathode Rey Tube or CRT (see p. ${ }^{\text {mmb}}$), developed on a crash basis during the war so we could have radar, and as long as it was around after the war, we got television.

But the lightning bottle, or CRT, can be used in a variety of ways. Its control plates, which move the ray of electrons around on the screen, can be given various different elecronic signals, causing the beam to move around in different patterns. In normal video, the signals move the beam in a zigzag pattern, where the zigs are very close together and the zags are invisible; the carpet of zigs covers the screen over and over in a repetitive pattern, and the beam's changing intensity paints the picture.

But we can drive the CRT differently by using different control signals. For instance: we can apply a measured voltage to the height or " Y " plates of the CRT, moving the beam to a given vertical position, and another measured voltage to the sideways or " X " plates, controlling its horizontal position.

On aur glorious Dig-It-All Screens we mingle the magies
of air and of fire.
2. LINE-DRAWING HARDWARE

The next step in design is to get the computer program out of the business of drawing lines by a succession of dota. So we build a plece of hardware that the computer program may it lok hastruct to draw a line. As an interface. it looks to the computer like four separate devices: registers that tell where on the screen the line must start ("first $\mathrm{X}^{\prime \prime}$ and "first $\mathrm{Y}^{\prime \prime}$) and registers that tell it where to stop ("end X " and
"end Y "). interfacmish to the connecting circultry (or interface) symbols specifying how lar up, and be These symbols were actually coded numbers and the ine symee turned them into voltages which and the intertace furm correspondingly then moved the beam correspondingly. (This process of making a measured voltage out of a coded numerical symbol is called digital-to-analog conversion, since (as explained on the other side) the main meaning of "analog" these days is "in a measured voltage.")

Now, this has several drawbacks. One is that the lines are dotty; nobody likes that. A more important annoyance, though, is that the computer scarcely has time for anything else. Here is a flowehart of what the computer has to do in its program. (Even If you didn't look at the other side of the book, flowcharts are nothing scary. They're just maps of what happens.)

1. EARLIEST System: a little program TO MAKE DOTS

The earliest setup connected a CRT to a computer by the simplest possible means, and made its pictures with dots on the screen-- a sort of tattooing process.

II was simple because all the computer It was simple because all the computer -

This speeds things up considerably, and allows the computer program to display on the CRT simply by telling the device what lines it wants drawn. Moreover, the program is tree to do other things while each line is being drawn, though this involves the problem of how the program is to know when it's time to send out another line-- and we needg't go into that here.
(Incidentally, it is a puzzling fact that such a device is available nowhere, although lots of people end up building one for themselves. There was such a thing on the market a couple of years ago-- line-drawing hardware with no interface and no CRT-- but it was withdrawn because of reliability problems. A just price if anybody wants to go into that, would be five hundred to a thousand dolars-- this year.)

3. EVOLUTION FROM THIS: TWO OPTIONS

There are basically two ways to go from this basic starting point. Either we can keep the display device intimately and integrally connected to the computer, or we can say the hell with it and cut the display device loose as a separate entity.

Ivan Sutherland has cannily noted that there is a certain trap involved in these designs: as we build additional "independent" structures to take the burden of display away from the computer, we are tempted to keep adding features which make the "independent" structure a computer in its own right. This paradoxical temptation Sutherland calls "the great wheel of Karma" of computer display architecture.

It is tempting to cut the display loose from the computer. It means the computer can be fully occupied with other matters than refreshing the screen-- preparing the next displays, perhaps. Many computer people believe this is the right way to do it, and it is certainly one valid approach. But unfortunately it also drastically reduces the immediacy of the system's reaction, making interaction with the system less intimate and wonderful.

Approaches which put display refreshment and maintenance in a separate device are less interesting to me, and so that discussion continues separately nearby. ("Obplay Terminok;". Dh21).
thes artide comitives ned pige.)

. the second program follower
On the other side of the book, 1 explained that a computer is basically a zippy device. never mind how construch, which in a core program somehow stored sy call here a program memory. Sulile programs may be in many computer languages- all of them contrived ayatems for expressing the user's withes. in different styles and with diffrent general intent-- under neath they ail translate to an inner language of binary patterns, which may just be thought of
as patterns of X and O, or lught bulbs on and off. The innermost program follower of the computer goes down lists of binary patterns stored in the core memory. and carries them out as spect of
instructions. It also changes its sequences of operations under conditions that the programmer has told it to watch for

The most powerin and responive cond puter ditaplays are those which build a second program follower which goes down has or ple ture-drawing inatruetione core memory.

We may call this also a "list-of-1ines" system, since the commands recognized by the display program follower are typically patterns that tell it what lines to draw

Typically also it has its own way of jumpng around in a program, and may jump to a specific hist orther parts of its program, always returning each time to the point from which it had jumped This allows the same subpicture to appear in numerous places on the screen at the same (A program that can be jumped to by other programs which then resume operation is called a subroutine; thus the real. or most prestigious name for such a device is a subroutining display.)

This design has some extraordinary advantages. One is that since the computer's program follower and the display's program follower both
share the same core memory, they can work toshare the same core memory, they can work to-
gether most intimately. When the user demands something new--by typing, say, or pointing with a light-pen-- the computer can step in a take various actions. Its program can compose a new picture for the user, get something from a disk or tape memory, or switch the display's program follower over to a new picture it has already prepared

Most importantly, the computer can move images on the screen, ellowing interactive $\frac{1}{\text { ani }}$ mation on the screen under the user's control. picture again, the computer simply supplies it with a new starting point. Since the list of line is typically $\frac{\text { atarting point. Since the list of }}{\text { in }}$ therm of sequences of lines relative to one another, the picture is drawn in s new place each time-- and thus seen to move on the screen.

This design han some extraordinary advantages. One is that since the computer's program follower and the display's program follower both-
share the same core memory. they can work toshare the same core memory. they can work to-
gether most intimately. When the user demands sotmething new by typing. soy, or pointing with a light-pen-- the computer can step in and take various actions. Its program can compose - new picture tor the user, get something from disk or tape memory, or switch the display's program follower over to a new picture it has already prepared.

Most importantly, the computer can move images on the scren. allowing interactive animation on the screen under the user's control. Each ime agnin, the computer simply supplies it with a new starting point. Since the list of line is typically in the form of sequences of lines relative to one another, the picture is drawn in new place each time-- and thus seen to move on the sereen.

Finally, the computer itself is free most of the time-- tree, that is, to do other thinga, which typically is always desirable. Just how
much the computer can or should do in such a partnership is o matter of dispute. (Ordinarily uch devices are spliced onto minicomputers and minicomputer fans. such as the author, see no reason not to perform all services for the dis play there in the minicomputer-- and a pox on the big machines. Others, for various reasons, see the subroutining display and its hast mini as needing the tender ministratious of a bigcomputer via some sort of communications line tirely legitimate view. People who are devoted o the high number-crunching capacity of big omputers, or to languages which require gre big computers to run in, have a right to their opinion. Moreover, it is currently feasible to store large bodies of data only on big computers - not because big disk and tape memories can't be easily attached to the small ones, for they can, but they usually aren't; and other ways to le minicomputers to big stores of data aren' available yet.)

Subroutining displays often have commands allowing them to display text as well as lines and dots. In the display of text they can use the same technique of "moving the picture" by aring its display at successively creeping oints; this whe caug say, whole pagrap slide on the screen. The importance of $\frac{\text { this }}{\text { overemphasized }}$. As more and more $\frac{\text { in }}{\text { people }} \frac{\text { be }}{\text { have }}$ experience with displays of different kinds, they experience with displays of different kinds, they orienting it is for a screen to clear and be filled with something new to read. You don't know where you are. On subroutining displays, ense of orientation he gets from turning pages an important thing to replace.

It must be stressed here that, fust as com puters themselves have no fixed mode or style operation, neither do computer displays; an the purpose of such devices is simply
helping people see and manipulate n any Pictures and text

Since pictures can be of anything, and text can be about anything, this effectively comprehends

Many readers will scorf, supposing that computer display systems will always cost tons of money. This is not the case. You can already get a beauty, with its minicomputer, for as little as $\$ 13.000$; and this price should fall as soon or lour thousand within a few years-that the market rontier is manufacturers realiz factory, but in the home. But we're gelting a re getting a types of subroutining display

Some early subroutining displays used a sereen-doting technique, but took the burden of core memory the instructions telling it to draw core memory the instructions telling it to draw to the DEC model 338, introduced about 1965; this attached to a PDP-8 computer (see p. 7 \%), and cost about $\$ 50,000$ including the computer.) Others drew lines as straight zips of light across the screen; an example is the I8M 2250 display, introduced about 1966. (The model 1 of this device buckled directly to the 360 . and cost, 1 believe, something like $\$ 75,000$; its successor. the model 4, buckled to their 1130 minicomputer. the package costing some $\$ 150.000$, and then , The 2250 was a good machine, but in performence suffers greatly from the restrictions of the 360 computer itself (see p. 4) .

These carliter machines are being replaced by new versionn with better-designed instructiona (nee "Computer Archtecture." p. 32. for a sense pectally fine unti is DEC's GT 40 . which buckles on the exceptionally fine PDP-11 minicomputer
 It goes for some $\$ 12.000$ including the computer. (That's today, we repeat. Consider not the price
at this instant, but how fast it's going down.)

The unite mentioned above are of the most basic type: "two-dimensional." whose pletures at any given instant correspond to flat drawing* magnificence from their capacity to interact, change and animate what you are looking at.
*THE MND'S ETE + confinues enp. IMSO.

Sotheland's SKETCHPAD

Seldom han an event in a new field had as much power and
uence an what dour ivan Sucherland did as a young man Net
The SKETCHPAD aysten, wich vas basically hia theate work at to laymen, and deeply elegant. Stuply for the univerapl influence it has had in the computer field, it deaerves our close attention.

Sucherland was one of the first people to understand the use of the computer in helpling people visualize things that weren't not lon of computers. While computers had been made to do sintastions as early as the forties, and computer graphics had been put to workaday duties in the old SAGE system (defending us againat boabers in the fiftles- remember the good old days?), Sutherland turned com-
puter display from an expensive curlosity into a rrue dream machine.

SKETCHPAD ran on the 36-b1t TX-2, a one-ot-a-kind experimentel machine at lincoln Laboratories (a wllftary research place nowinally
a part of MIT). It had a dibplay screen, light pen and loct of handy a part of MIT). It had a display screen, 1ight pen and lots of hand gwitches.

SKETCHPAD was basically a draving syatem. But rather than simulating paper (as aome people might have done), it found splendid

In the Sketchpad system, Sutherland looked for ways that a In the Sketchpad system, sutherland heoked for ways that a
esponding computer display screen could help people design thinge He pioneered methods of drawing on screens, with such techniques te the "rubber-band line" (a straight line on the screen, one end of which follows your lightpen witie the other remains fixed), and he instance"- a subpicture atored in core memory

The mind-blowing thing about Sketchpad was the way you could Wove and manipulate the picture on the screen, with andred coples of a basic picture; then a change in the basic picture vould im mediately be shown in all hundred places. Or you could expand your picture until it was effectively the size of a football field
(with you looking at a tiny view in the handkerchief-alzed screen). or you could draw mes gears on the screen, and with the light pen (and through the "conscraint" facility) make one gear turn by curning the other!

This elegant technique, the constraint, does not seen to have been imitated even nou. A "conscraint" vas a restriction plar could move or tanipulate various parts of the picture on the screen but the parts that had constratinta could only move in certain fections, or according to certain formulas, or dragsing other
parta along, etc., as specifled.

This was a profound idea, because it mesnt that any rules for the manipulation of particular objects on the screen could be added
to Sketchpad as particulars within the larger progran, rather than to Sketchpad as particularis within the la
having to be programed in from scratch.
(One extremely interesting aspect of Sutherland's thesis, viict One extremely interesting ospect of sutherland s thesis, whic
people seem to have wissed, dealt tith displaylag a structure of constraints: that 1s, showing what elements depended on what Of cons elements, in a highly abstracted diagram that the aystem could
shou you. This form of display has remarkable possibilities.

After his brilliant SKETCHPAD work, Sutheriand uas made head of ARPA's computer branch (see "Military." p. Bg). There he was
livolved in many of the computer funding decisiona of the late gixties, which concributed to the impetus of computer diaplay. (His predecessor, Lfckilder, had been a pioneer in time-shart ing, and may of the forward movement in the computer field in recent years when they were at ARPA/IPT.)

Sketchpad vent on as a continuing research tradition at lincoin Labs. Timothy Johneon. for inscance, ande a veraion of it that forerunner of the various three-dimensional line systeme deacribed hereabouts.

From ARPA, Sutherland went on to the Univeraity of Ulah, Whence be slpped off with the Computer Science departaent chairman to found the Evans and Sutherland Computer Company, amkers of
the top-of-the-1ine computer diaplay ayatems (kee p. Smase and p.jn3).

Sutherland'E work has shown an elegance and loventiveness
 scheduling uan of a computer, which benefited uarry sore than any previoun method; and the infacous "Great wheel of Karas" article, phere he compared the design of graphical computers to the tindu ayben of reincarnation-- it you kepp adamg follower and another coon-
the denign, eoon you have another progran follow puter in the same box-- over and over.)

Computer Movies

How do computers make movies?
Well, first of all, computers do not make movies unless thoroughly provoked.

In fact, only people make movies. But computers, if sufficiently provoked, will do a lot of it: enact the movic and photograph it, frame by frame.

There is no single method.
All forms of computer display and computer graphics may be used to make computer movies.
"Computer animation" is any method of makng movies in which a computer successively draws or paints the successive individual frames, which may be done by any of the methods mentioned in this book. Now, since there are numerous methods of making pictures by computer, then any method of making different individual pictures, in a succession of changing frames, is computer animation. So a "computer movie" is any film made by, or with the picture-making aid of

In other words-- it's no one thing
Now, there already exist hundreds, if not thousands, of computer movies. So far most of them have been on technical topics-- the mechanecs of sateliite orbit stabilization, the mechanics of explosions and so on.

Here are a few stills from some other movies more humanistic

BIBLIOGRAPIIY

Newman \& Sproull, Interactive Computer Graphics. McGraw, \$15.

This is the textbook. Anyone interested in computer display should get this imnediately.

An expensive journal, Computer Graphics and Image Processing, comes from
herwood Anderson, " Computer Animation: A Survey. $\frac{\text { Journal }}{\text { Lists nit }} \frac{\text { of }}{\text { netencragraphics, Sep }}$ M1, 13-20. ists nineteen cowputer-animation languages of that time.

Ken Knoviton, "Computer-Made Films," Filmmakers Newaletter Dec 70, 14-20.

Vintage Knowlton, using BEFLIX. (This longuage used the COM quite out-of-focus letters actually

Vandert
which ahowe':
BEFLIX, which it grows from).

Lillian Sohwartz

LILIIAN SCHWARTZ

A talented artist with a feel for tech nology, Ms. Schwartz has been working for several years with Knowlton and others at Bell Labs. Her films with Know1ton, mentioned elscwhere, are marvelous. She now works t a more permanent setup, a minicomputer that runs successive images on a color TV screen, employing a modified form of Knowlton's EXPLOR language. The work is immediately viewable. This allows rapid film construction, not previously possible when the work had to go through a slow animation canera before she could see the result.

For Knowlton-d-Schwartz films contact: Martin Duffy, ATsT, 195 Broadway, NY NY.

Schuarts \& Knowlton. Using the EXPLOR language they make pictures and patterno scintillate and row together. (EXPLOR in some ways generalise Cormay's Game of Life; see p. 48 and p. DH L6)

RON BAECKER'S GENESYS

By now there are dozens of computer animat tion languages- perhaps hundreds. Each one employs the techniques of animation which its developer wanted to use, tied together "Computer
 animation languages, described nearby.)

One of the more influential animation systems has been Ron Baecker's GENESYS, a 2-dimensional animation system programmed in the late sixties at MIT's high-security Lincoln Laboratory. (It used the TX-2 computer, mentioned elsewhere in this book.)

Baecker, a cheery and genial fellow, expressed interest as a student in using the TX-2 for anima tion, and was allowed to. The system he produced has a number of lessons for us all

GENESYS is a "Good-Guy" system, as discussed on p. 1- Meaning, in this case, that it is easy to learn and simple to use. As argued elsewhere in this book, making computer systems clear and simple is of ten hard for the programmer (and may go against his grain), but is essential

PICTURES AND MOTIONS

GENESYS makes the following simplifications of your movie: all images are made up of dots. They do not change as you watch; animation consists of the images either moving or being replaced.

To create an image, you draw it onto the screen with a lightpen or a tablet. (As in the SKETCHPAD system; see p. ${ }^{\text {dr1 }} 27$. .) Parts of.the image may be changed until you're satisfied.

Now, to create the animation, you do the same thing. Each image can be made to move on the screen; and the path of the motion may be draw on the screen, through the picture area. Not only that, but the timing of the motion is controlled through the same diagram, by the spacing of the dots. (Baecker calls his control diagrams p-curves.)

Lastly, sections of picture may be re placed by means of the control diagram (as indicated in picture above).

Having created such an animated sequence, wich is stored in symbolic form in the computer ("digitally"), you can view it on the acreen, decide what you do and don't like about it, and change any part of it.

The basic elegance of the system is this: Baecker made everything work the same way, through control by ecreen diagrams. He simpli red the animation problem in a clear and simple

Ron now teaches in Canada and is into working with PDP-ils. The results should be fun.

Lynn Smith is a young Boston artist Who has worked extensively with Baecker's a movie which nearby). One result has been all: "The Wedding Movie for Bob and to us (Her Friends Bob and Judy were getting married, so she made this movie, a few nutes long and quite clever, to celebrate it.)

This is my favorite example of how computers should be used in the human world; it says more on the subject than any dozen articles.

COne question that remains unanswered is how a system like GENESYS could have been used for such a purpose, seeing that most people in the field believe GENESYS only runs on the heavily-guarded TX-2 computer. Regretfully, I can shed no light on this here.)

CoMs
 Computer
 Output
 crofilm

are what you use to make computer movies Basically they consist of a CRT and a movie camera in a box.

Mostly they are used to put text on Mostly they are used to put text on
microfill by computer, so generally they are not connected to a computer but run off magnetic tape.

This turns out to be very annoying if you want to hook up the computer directly to the COM, and make movies that fill the frames spot-by-spot. For that you really need your owm movie camera and a minicomputer. Movie cameras that can be made to start and stop by computer are called "pulse cameras" or "instrumentation cameras.") The society for people who make Movies by Computer is called UATDE. (Users of Automatic Information Display Equipment- an obsolete title). It used to be a club just for companies that owned coms made by Stromberg Datagraphix, but evidently it has now cut itself loose and become a subsidiary of the National Microfilm Association, 8728 Colesville Road, Silver Spring ND 20910.
(NOTE: for them as want to make color movies, the two alternatives have been either o have separate primary negatives combined at a lab-- the "old Technicolor" process-or to add a complicated color-filter box to COM or other CRT setup. Such things are avallable comercially now, from Dicomeda whole Color COM.)
bibliography
Computer Output Microfilm. $\$ 10$ from National Microfilm Assn., above. Lists available COMs and service centers.

(tioveg: Whiso LivkSt

puto is the worid's greateat congiter display

 wateen is exteremp
 \square second.
thile iterature on pato it copioun, it is
 osyone an ent huatazt tor the syotea.

 Aitier it Atso certunly one of the world's greatest

Ing If you have a phato terminal-. you preane oly

PIATO GAMES

They morn sestem.

When the Author gets $t i$ red of Auchor Ing, or the
 kerre trake
the Imation.
Inet
 look ot the grest roses. patterns that copesticed to the
 ture series, nearby).

Then there ore gomes you can pler ago inst the pystam, like racetrack end blackijck. (These games forgotter Men you sign offt, Remorner, or course.

 entice you into try ing things out. Tenciar whent picio. which tecch vou compter progseming without
 the so pick up pietures of boils, from there on
 clusively with litile men and their excursions among bells and folling sticke)

 adivereary.
 Sid Boand for morra chal langere. Xida love PuT0
 xida tove PLato game

 chtnes tre seen to mennferture condy, box It and
stip lt.- depending on miat but tons you press.

Some gomes are played between people who ilt
cogachar before osingle Plavo terminal. often with
 way along a boord with numbered squares. Older chit-
dren can dig How the West Was $(1+2) \times$, dren can dilg how the vest ves $(1+2) x)$, which involves
oruoping the numers you geet by chanct to try to get
aheod of the other stagecosch. the "aic boano" games

St 111 smother category of games, though, maits
the edult who creves rool excitement. Sectusi pLATO tha adutt who craves roel exclement. Decauso plato
 of Parisi in the french phone system, people calling
the same nonexistent phone number

 Anyway, the big toard games of PLATO have exac tiy that: "thared ifst, or
Is playing the specific gane.

But you don't have to use your right name.
In this jaunty soclety of shadows, you plek your
 prove et play you con shed the identity in which you

The main games with BIg Boards are that old
stondhy, $\frac{\text { spacewar (rocketships wheelling and firing }}{\text { at }}$ each other and sidding around on the screen);
dogfight (biplanes wheting and firing at each other
and sididing around on the screen). monwar (shooting

 diffarant staris and solar systems, alt of wich mer
be fevisiled. All of milch are differenz...) People who only play PLato games occasionalty
have to sign on by eyping their names into the dig hove (They of ten gete sloughtered by the regulars)
boord.
The regulars. hah. when they're signed Into the system, they have. merely to jump to si specitic the
for their fight $1 n$, names to be posted on the big
 Gient Pud. Fodzilia. tigress, eneme saled, Conan (As those insiders who have outomatic sign-on
to gig Boards write programs to do the sign-on, thei to aig toards write programs to do the sign-on, the
arcival in a big Board game is orten An animated
sign-on. The culest trick is THE RED BAROM's: is siginon. The culest trick is THE RED BAROW's: it looks
ilike this.
 It works like this. For dogfight, the terminal al-
ready has stored in its temporary menory, as "characters, " the tittle pletures of sirplanes, that are
goling to buzz around the screen. So the Beron going to buzz around the screen. So the baron just
follows his name with the code for that spectal char One last point. No longer can you sign on with
an obscenity: a littie obscenity-checking program an obscenitr: a litie obscenity-enecking program
looks for the usual expletives, in case visitors or other priggish folk might be looking. But of course
thlie is easy to cl rcumvent by outting periods berween thie is easy to cl reumvent by putting periods between
the lecters of your nasty mord, or something similarly deceptive to the poor program.

The STRUCTURE OF PLATO-SPACE

The PLATO keyboart.
What Looke odd and
That looke odd and arbitrary to you is believed by devout Platomista

 -

 Hou the author might wee these, hovevar, was hie am affair.

Wota the arrave over $Q, B, E, A, D, 2, X, C$. They allow the otudent to mova

 font is owrent ly stored on thift key, going into whatover special
the little square mears. I heve no inkling of whe

IS IT BETTER TO TOOT?
"A tutor who tooted the flute
Tried to tutor two tutors to toot. Tried to tutor two tutors to toot
But he cosked through his snoot:
is it better to or to tutor tas it itcors to to toot?"
Folk thrng

The turor langunge grow out of drill-andhere a student's answer is to appear on the screen. This is the "arrow" camands. The lan
guage has a strange scanning structure built guage has a strange scanning, structure buitt
around this "arrow" comand, much as the trac Language (see pp. 10-21) has a scanning struccure built around parentheses and comas. Bethe arrou comand, but journeymen do.
tenczar's concept of a concept
Hor Much has been made of turor's facility type tn. Actually, of course. the computer does not "understand" what the student saya,
(see Artificial Inteligence; p pm $12-14$),
 the person using TUTOR to prepare precenta
tional materials.

Basically, TUTOR's "concept" facility
 function") supposedly substitutes for any word of any language a code of 60 bits (see
-Binary patterns," p. 33), which wans the program in turor can rapidly test a student. nput for nume tous differant possible thinga.
(rhe power of this technique will be readily recognized by computer people; ; unfortunately
ehera is no rom to explain it further hero.)
thus a tutor prograin may contain "conespl earches" that test whether * student typer nativea. While it way be atrange to call natived: While it may be strange to calt
paul tenczar': turor language, the programining language inside pinto. is like any
other programing language (gee pp. $25-31 \mathrm{y}$, intricate, and unlike its reaults. That is, program beark no more resemblance to what
it does than the vord -cow- looks like a cor.
plato is a system for canned presentations
hhat respond to the student. Studente need chat respond to the student. Studente need
not knou Turor. Anyone out to prepare such
presentations muit learn it. hos. not knou thror. Anyone out to prepare such
presemtations muat learn it, however: and the
attempt has discouraged many.

Tenczar is a former biologist, and had no
reconceptions froo coaputer orthodoky to bind preconcaptione froa coaputer orthodory to bind guage LE very original. Thaze thet only roce

To learn the first itep in turok-- how
to set up drill-and-practice lesocons, for into set up arili-and-practice

To do anyehing coop lex, hovever, requiro thum when people zuy tutor is eany,- they man thone firat oteps.
 That is. A programer cannot cuscoaize the 1anguage with now compound functions of hif,
wn making. stups are bal ing taken to corroct
 people can be perinuaded to put in naw compnas
ocheri want for, e.g., chocolate chip cookion.

You can read the atandard-aize lettering off the acteen At SIX FEET-- even though it
BO BGGER THAR PICA TPE. Fantastic.
The internal cy cuitry that dravi on the sereen
1f highly copable. Receling a $20-1 \mathrm{blt}$ code.
ALINE ON TAE SCREEN, or
from ita FIXED characler nemory, of
TWO SPECAL CHARACTERS ON THE SCREEN from 1 CP CHANGEABLE character memory
(which can be loaded with Russian,
Armenian, katakana, Cherokee or what
ever- even little plicturea- at the

Fote that all 11 nes and charactera for che plaman ccreen can be turned
off (black on orange).

Geflyy sround in mir sybita
mistt be edsier, (su trates, "pmpesi)

three-dimensional line displays
So far we've discussed the two dimensional subroutining displays. However, things do not by any means stop there. An tented with techniques
in the early days experimented for drawing line pictures by program: the earfliest of these used plotters, output devices that let the program draw with a pen. But interest
soon grew in the possibility of interactive threesoon grew in the posmibity of interachson's Sketchpad 4 did this entirely by program. But as night follows day. people set about putting these techniques into hardware, creating devices that would automatically show things in threedimensional views-- allowing the viewer to
rotate views of nonexistent objects
as if they $\frac{\text { rotate } v i e w s \text { of nonexistent }}{\text { were objects as in the }}$

The views we are talking about. now, ∞ sist of bright lines on a dark field, and so the "objects" we are talking about are called "wirefratne" objects- they could effectively be mad build them physically to see them.

Basically a three-dimensional system of this type stores the lines as coordinates in threes: endpoints of lines in a mythical three-dimensionsi space. Each point's location in the space is told by three numbers (example showing a house p. : a line in a space is represented in the data structure by two such points, and a code or something tying them to
getter. ether.

The second program follower in such a device behaves much as it does in the 2 D system but with certain additions. Like the 2 D system. it proceeds down its own program one step at a time. Like the 20 system, it finds in its program the coordinates of a line to display and creates electronic signals representing its end points. But it does not display these directly, since these are three-dimensional coordinates. instead il routes has signals 10 we may ware that has been rimed with the angle from which you want to view the object. This view calculator, automatically and by mysterious mean which vary among machines, produces the view, and its signals go to the screen.

Let's say we want to display a point. The display's program follower pulls three numbers from its display list and notes the code that says it's a spatial point and not the end of a line. These three numbers slide on into the view cal culator, already primed with the angle of rotahon; and the view calculators niggers where on $\frac{\text { the }}{\text { noreen }}$ that point should be displayed. The point goes in the screen--telling where the point goes in the desired picture- go to the
screen controller, and the point is brightened.

How are these coordinates calculated? Well, some commercial units do it electronically (in analog") and some do it symbolically ("in
af you want the equations for this, they're in the Newman and Sproull book.)

Then how does the view calculator handle line? Same thing

The program follower pulls three numbers from its display list and notes the code that say view coordinates of both points are calculated and fed to the screen controller. The screen controller now has two points on its screen-so it draws a line between them.

The first device of this type way, I chink. the so-called kludge (pron. "Kloof"-- computer slang affectionately) built ar MiT's Electrons sypher Laboratory in the early sixties. This device vas ane-of-a-kind, built out of DEC circuit cards and hooking to a bigger machine. The ESL Kludge shoved vividly how good it was to have instantaneous view

The first of these systems to be offered commercially, I believe, was the "Adage Display, made by Adage, Inc. of Boston, which used their unusual Ambilog computer (see p. 43) to rotate objects on the screen. I vaguely recall that it
cost about $\$ 80.000$ with computer but without cost about $\$ 80.000$ with computer but without ac-

Actually Adage had a tremendous lead in this field, but they let it slip for some reason. and have now lot lt to two firms: Evans and Sutherland on the high end. Vector General on the low end. (But of course things keep chansing.)

The Evans and Sutherland Computer Commany was founded in 1986 by ivan Sutherland, creator of the masterful Sketchpad system. and David Evans. Chairman of computer science st
the University of Utah. (For a time both held the University of Utah. (For a lime both hel
appointments at U^{2} at the same time, but now appointments at U^{2} at the same time, but now
both have left the university to devote full time to their dream factory in Salt Lake City.)

Their first product was an extraordinary piece of hardware called the LDS-1, which they iTo anybody from Utah, however. LDS means Latter-Day-Saint. and don't you forget it. Evans, indeed. is a Mormon, but l've been told it may have been Sutherland b sense of humor that chose the acronym.)

It should be pointed out that a special advantage of digital perspective calculation is that viewed coordinates can be read back by the com
muter, and serve as new data, that mort of thing.

The Adage Display is isometric, meaning that lines do not get shorter as they get farther away or longer as they get closer. While this is marvelously impressive, most people want real perspective: and it was this that Evans and Sutherland set about to make available in real time, i.e., in direct response to the viewer' actions.

The LDS-1. weighing in at half a million dollars or so, buckled to the PDP-10, a big 36 -bit computer from DEC (see p. 4O). Its
view calculator worked symbolically (digitally). and thus could work to the higher precision necessary for true perspective calculation.

Among the exciting dernonstrations that you can see sitting at on LDS- 1 are a map of
the United States you can zoom in on, bringing you in to a map of New Jersey, then Atlantic City, then a specific intersection, all in one smooth continuous motion. Also a simulated landing on the flight deck of an aircraft carrie -- with you flying the airplane, so you can go over it, to the side. into the drink or straight at the carrier. In all cases the ghostly ship will move, turn and change perspective on the screen as if somehow it were really there

Several LDS-1s were sold.
Meanwhile a little new firm of young guys in Southern California, Vector General, came up With a line of terminals like the Adage line, ex
copt that they could buckle to the 16 -bit minicom puler of your choice. (ln practice most of them have been attached to PDP-11s; see p. 42 .)

The Vector General display is isometric and makes its calculations in analog, like the Adage Display. It has been very successful among both universities and private corporations In addition, a highly interactive and wellof data structures representing 3 D the creation well as for well as for general-purpose programming and the to individuals or companies that have Vector General displays attached to PDP-11s. (See "Coup de GRASS," p. mai.)

But wait. Evans and Sutherland has now dropped the LDS-1 and given us-- no, not LDS-2 but something called The Picture System-- also built onto the PDP-11, but this one works symbolically (digitally) and in full perspective. The price starts at eighty grand.

Since the Picture System works out of the PDP-11 core memory, the commands it follows are 16 bits long, since that's the size of a slot
in PDP-11 core. But wait. They've designed the thing to convert to 36 bits, so that coordinate are moved to a private store or buffer between the program follower and the display. This means the display can zoom and zip around in the scene without bothering the computer.

Another important feature of The Picture System: it will do, not just ordinary perspective, out such weird view calculations as wideangle similar stuff.

UNFORTUNATELY, just to get through the basics, there is only room to discuss stick-figure
graphic display here. But curved surfaces
However, system

- And the Vector General and the Evan you to turn things on the screen an easily at if they were on turntables behind a pane of glass.
That's hov you see. you see. That's how you see, you see.

This interaction in what makes computer di*(It's also why we use the tern computer display in this book, rather than "computer graphics," since people tho make computers draw with pena sire
also doing "computer graphics"-- a related activity but not one to change the world.)

The rules of perspective have been under stood since the Renaissance. In olden computer times (up till about 1965) people used to do three-dimensional view calculation by angles relative to a three-dimensional data structure. Then Larry Roberts at MIT noted that there was a more appropriste mathematical method, long
moldering in obscure texts. The idea is this: if you add an extra dimension to the date, it if you add $\frac{a n}{\text { easier }}$ extra dimension to the data, it's comes a simple matrix multiplication, which has no commonsense explanation but is important to mathematicians.

So that means that to calculate views of three-dimensional objects, the most usual way is now to add that extra dimension. Instead of having a point in space whose position is 36-2436 (in some set of three-dimensional coordinates). another arbitrary number is added to make it. say. 36-24-36-1

It seems that in the mathematics of multiple dimensions. it comes out simpler that way. Inimproved dimension is lust like the other three. For this reason, such an augmented $\frac{\text { system of }}{\text { of }}$ coordinates is called homogeneous coordinates. is just stirred in with the rest, and our comes your desired view calculation. (The formulas are to be found in Newman and Sproull. Princi$\frac{\text { ales }}{\text { sis }}, \frac{\text { of }}{\text { your basic text on the }} \frac{\text { Inter }}{}$ subject.)

At any rate the additional coordinate is often referred to, incorrectly, as the "homogen which is why it works.

DeFantits Coup de GRASS

Impudent and plucky Tom DeFanti was an assis ant profestor at 24 . This in part because he has
created one of the world's hattest 30 graphics langcreated one of the world's hattest 30 graphics lang-
wager. which he cals GRAss. the sayg it stands for uagastics symbiosis systeme- also, he says, it turns You On.)

Tow's GRASS language is an excellent beginner's computer language sor two reasons: first, it is easi-
ly taught to beginners, and second, it is about things of intercest to beginners, i.o.. pictures and graphical

 state, on a project directed by artist charles Csuil. Tom had a free hand, though, and the language design is his; but much of the specific coding was done by
Gerry Moersdorf, and the graphics algorithma and roGerry Moersdorf, and the graphics algorithma and rotion was furnished by Maynard E. Sensenbrenner.

Grass runs on the PDP-11, a spiendid minitcomputer (ron's is shown on p. 36) and is specifically designed
for the control of threc-dimensional stick-figure displays on the vector General display system (see p. mp 30). But a lot of people have wrestled wi
matters and not done as well. Let's conider:

its clear simplicity. Tom believes computers are for everybody; he is not a high priest bent on mak ing things obscure (see "Cybercrud," p. 8). Thus he as possible. Tom likes to stress the concept of "habit ability" (a term of w.C.Watt), meaning the coziness of a system.

ITS GENERALITY. Refining and condensing the basic ideas of a system is the hardest part of the de sign. Defanti made several interesting decisions.
A. The internal form of the language is read prograns in their final GRASS form.
B. For a three-dimensional system such tructure is the three-dimensional abject-structure 15 the three-dimensional object-- a
list of points and lines in space. This is the form of data GRASS uses for most purposes
C. In the design of such a system you want larger 3D objects to be buileable out of
maller ones. This implies arranging data in tree ones. Thuctures (see p. 24). You also want to be able to make things do compound no tions on the screen-- for example, showing an airplane flying around on the screen with its propellor spinning; this too implies a tree stru
ture. There are some programners who would use ture. There are some programmers who would use
different tree structures for both objects grouped together and for movements grouped together: tom uses one.
D. Objects shown on Tom's system can also appear to move on complicated paths through thre merely another obiect. It seems obvious when you say 1 th . yet this kind of simple generality is exactly what many programmers seem to avoid. (Nate his facility is a generalization of Baecker's p curve; see p.gn(9).
E. Input devices are completely arbitrary and programmable. What happens on the screen can be con trolled by anything-- any variable (see p. I6) in
the programing lanquage. In other words, Defanti has decoupled the screen from any particular form of ontrol, allowing user programs to make the connectthat, using Tom's language, it is comparatively easy Eo build complex custom controls for any function.

F. The language has string functions that allow text handling. Since the language may also use con-good-guy" interactive systems for naive users, as described on pp. 12-13.
6. Ton's language is interpretive, like trac Language (see p. 30). That means it is "slow" in terms each operation. However, Defanti has added a "complle" feature to the language, to that for long macros (sections of program) that have to run repetitively, more efficient compiled versions of the macros may be gene-
rated.

[^1]H. The language is extenslble, maning that the
user may create new conmands in the language as program user may create new conmands in the language as program
These commands, houever, may be used in later prograsa
as if they were built into the language itaele. I. The syatem is complately general-purpose. Many their original purpose. This ts more dificult, but oh o much more worthinile.
3. ITS deep generality. Thinge should be versatile, and able to be tied toyether in many difforent ways. This is make a system very powerful. (The term in mathematics is "elegance.") As is said on the other side of the book, com-

Anyway, GRASS has this kind of generality. It has a great numbor of facilities, growing weekly, and they all tie together in clear and predictable ways, without exceptions.
Rather than create special functions whith cannot be tied gether, Young Doctor DeFanti has chocen instead to make the separate desirable functions part of a simple and clear language. (A note to you elegant typer: grass is fully recursive As a nice example, Dan Sandin (see p. Dh 8) wrote a program to display Peano lines that was under forty CRAss instructions
long. it is also astonishingly reversible: you can watch it uncreste the Peano line, straightening itself backward.)

In the more usual sense, Defanti's language is not the 'nost advanced'; there are more powerful 30 systems than the Vector General (the LDS-1, see p. DM 30 , offers true perspective), more eleqant user-level languages
(see TRAC Language and ARL, other side), true halftone (the Watkins Box); yet his achievement on close examina tion is extraordinary. Never mind his age, the more esoteric features of his system (full recursiveness, etc.) or the fact that he does not seem to have made one mis take, which is infuriating. Consider only this: Tom de can be taught in a few hours to computer-naive beginnef that permits full three-dimensional animated interactiv

THREE WAYS OF SEENG MOLECULES UNVG 3D COMPUTER DISPLAY.

Much of today's impetus for 3D compute display is coming from the field of chemistry University chemistry departments are buying equipment like the Evans a Sutherland LDS-1 the Adage and the Vector General

Tom DeFanti. Showa part
of hemoglobin nolecule. of hematurn noleaule. Data stmucture from
Richard U. Feldmam, NIH.

Why?

Because chemistry is increasingly involved with complex three-dimensional structures Crystals, long folding chain molecules, minuscule forces acting on structures whose shape determines the outcome. Organic molecules that involve thousands of atoms, and whose complex folded structure exposes only certain key features. And so on.

The Vector General display illustrated here and there on these pages belongs to the
Department of Chemistry, University of Illinoi at Chicago Circle

Eokknight a kelley (aeep.DM3y)

The bate fatture of all: it's currently available. PDP-11 owners-- even without Vector General displays--
may inquire of: Toa Defanti, Doctor of Art Proqram, uicc
Chtago il Chicago IL 60660 .

You may wonder how a young bronking buck like DeFant has managod to do such an axcellent job, so elegantly, wher
"I just learn from other people's mistakes," he says

rof. Depanti
miscellany
Coupling his aystem with that of Dan Sandin (p. DM8
created the "Circle Graphics Habitat," deseribed an I hope I'm around long enough to write the GRass lan-
(DeFanti's GRASS is an ideal language for something like the 3D Thinkertoy, described on pia have any provision for the storage of large complex dat adequate storage data structure and storage macros within
GRASS's use of the DEC Eile system.)

sCreen controls

The great thing about CRT displays is that they can be used to control things by manipulation of pictures Instead ture with the light-pen and move some part of the picture. The computer, sensing the choice or adjustment you have made
can then perform whatever operations you have directed.

Some samples:
Thermostat
VOLUME
$\therefore \quad \because$
TONE

[codrat design

The design of screen controls-- easy-to-use, clear and simple controls for everything-- is one of the frontiers of computer graphics. (See "Fantics," p.yn 48 SJ dimensional flip

We do about multidimersional phenomena?
One very good solution is to show a selection of thre dimensions at a time, and provide for easy "£lip" from one thing on demensions A, B and C you are looking at it on dimensions A, B and X.

For example, suppose you're a sociologist looking a measurements of various traits among a group of people. It's a cloud of dots in three dimensions-- whatever three
dimensions you're Iooking at. Some could be: age, height, wight, sex, ethnic background, premarital experience, edwhation... etc.

You view this cloud of dots, say, according to age, wight and ethnic background. That means you can rotate around and see how many people in the group are what

Using dimensional $\frac{\mathrm{flip}, \text { however, you can change the }}{}$ view as follows: rotate the box-frame till it becomes a square to your eye. Then you hit the control that makes
the unseen dimension "flip" to another dimension that in the unseen dimension "flip" to another dimension that yo terests you. The cloud still looks the same-- until you
rotate it, and the third dimension is now "premarital ex perience." so you can quickly get a view of how populations are really divided up. (Note to sociologists: this same operation, with stretching and clipping, provid Lazarsfeld type.)

he twisted smile
You can make a character change expression on a 3 D acope by making his mouth a twisted wire that can be
rotated between "frown" and "smile" positions. The trick is the shape of the wire.

COMPUTER HALFTONE IMAE SYSTEMS.

Computer Decisions Magazine.

haERE to get it.
Computer 3D halftone ayatems are now avallable to moviemaker from a variety of sources. it tends co cost a doen money, but when compared with normal Hollywood production expenees, it turn out not to be so bad
sales of machines.
compuler image corporation
for sale. See P. DM 39
vans and Sutherland Computer Corporation, salt Lake city, ffers the Watkins Box, a real-time display device aing the hatkins Method (see next page) and offering t costs about 5500,000 and attaches to a pDP-10 arge computer; see p. 40).

General Electric, Syracuse, offers three-dimensional scene gynthesia like that at the bottom of thin pare. Every
job is custom. It running on amalifah computer. Production costa,
after your data atructurea are ali in, could run little as hundreda of dollariper minute (rather than thousande).

Contact: Charles P. Yenus, General Electric Co.
, Bullding 3. Syracuse NY 13201, 315/456-3552. (Given
1n detail because harder to reach than these others)
Computer viauala, Inc., Elmeford, NY. Offer more detafl than cresybtem, and go straight co filme without video.
Hore expensive: probable costa run in the thousands of doliars per minute. Agalin, every job is custom.
Dolphin Producions, NYC, has everal Computer Image machines, but their president, Allen Stanley, is intereated in everything.
Computer tmage Coxp., Denver and Hollywood, albo offers bervices on their machinet. On occasion they have been wilinng toback film-makers, reportediy on a so-50 basis. Their president, Lee llarison itt, is a suell fella.
first article
General idea of 3-D halftone.
Polygon Systems.

Author's note. These articlen were written for Computer Dectsions magazine, and reneet the results of a lot of phone calls they paid for. The first of these articles was pubIfshed in 1971. The othera have not been previously published, as the editora and I were never able to get together on quite what
they wanted.

This is, to my knowledge, the only existing collection and summary of computer the articles reveal more about the systems than hal been published anywhere. Sur prisingly, even two years later they do no seem out of date.

However, due to the editorial style of Computer Decisions, and my own, this has all come out extremely condensed, and phrased in breezy and humorous ways not ordinarily considered acceptable for serious lechnical reviews. The hope is that they will supply orientation to the browser, deeper inaights to for them as wants to pursue further directions for them as wants to pursue.

My thanks to the publishers of Computer Decisions and its editor, Robert C. Hasvind for their encouragement, phone money and permission to reprint this.
 \title{
halftone image
 \title{
halftone image synthesis
}

There are more ways than one to produce shaded pictures with computers. Here are the methods of the 'polygon school.'
by Theodar H . Nelson
To most peopple in the computer field, "computer graphics" means line drawing-systems and ptograms
for mapmaking, pipe layout, automobile and aircraft design, or any other activity wbere a diakram may help. Using line-drawing programs and equipnocnt.
designers may create line drawige on graphic sereens, reworking their ideas untal satisifitu. the system then disgorges polished drawings and specifications for the desigicer's real intent, sonething else thast is to be made or donc. But it is possible for a
picture isell-instructive, interesting or pretly-to be the gual. In that case we will often want pictures that look like things instead of wres A picture that is nol all black and white we call "halftone
With much sericy nut a low With much secrecy and a sow tant, computer
haltone systems arc now being buill all over. The methods are extremely different frem one another: only the culpuls are similar. Some exist in sontware. some have already been built into special hardware.

These systems have many pancential uses for visualiza.
tion, animation and new kind of photerrapty it
tion, animation and new kinds of phorograpty, in
ant, scholarship, mevien pictures and T ' for visualarn, scholarbhip. mexich picrures and T, for visual-
izing words lost ind tmagned. equipment yer unbuilh. izing woth lost and omagned. "quipmern yet unbuith.
the respemisencos of airctaft. It may not he long
 synthesizer, just as musicaans choove today ameng Moug. Buchla and ARP music synthesizers. But none
is in proxuction yet. This is an attempt to review the coming apparatuses of apparition. Not only is the fictd of halfore one of the most exciting in computing; it is also one of the nuttiest and most secretive. For instance. at one time a firm that
was supposedly markeling is halfone system declared was supposedly markeling its halfone system declared
the present author persoma non grata and not to be communicated with in any way. though information was frecly avaifutle to others. "I don't think it's necessarily paranoia." says Rod Rougelot of General
Electric. "A lot of guys staned about the same time. Electric. A proceded in a heads-down manner." I 1 torok a special kind of initiative to head oft in that direction with no external provocation. "All those heary cats

Computer rraphics the ordinary way The computep, ss pen mand draws lines from a

threedimensioinal in corere memerory. In
list of 3.0 coordintes is
to list of 3.0 coordinates is conver
to a isis representung a particular
view: the result hoks view: the resuth looks
like a wire frame.

(nudes often turn up at big installations). or in cennection with somic ssientific problem, sulch as analyzing chromosomes. Kennech C. Kies well-known photo conversions making pictures into huge grids of tiny whimsical symbols having different grey-values.
Various other systems have allowed users to create hheir own orignal 2-D pietures. But the nalural temp-
ation is to want the computer really to make pictures Why not have the compuler produce a photograptic picture direcdy from the 3-D representation of objects? Computers don't do this by nature, any more tha hey do anything else by rature, so how it may be also interesting because of its intuitive nature. Vision of scenes in space are around us constantly, and we intuitively understand the geometry of outines and light. As 3 -D work progresses large problems are being
overcome. The famed "hidden line problem." for exmple, was misleadingly couched, since the problen is not finding what lines are hidden, but what surfaces are in fron!!

same hata to make a readistic shaded
or haltone picture The visible pars
of the obiects are ascertamed by

MAY 1971
13

ystem. These make movies and videotapes for you with their pictorial synthesib system, These are from a beautiful (really beautiful) fila they did for NaSA. The point of stand how the sections would be delivered enacted it in the GE system, so viewers could underso on. For expocicion of that kind, nothiag bears this kind how the antennas would unfold and

We muss draw on this underitanding of serncs to
 sre gecmetically nich. thad thus many diflerent tecth
niquer may be uued to exlrad paktures frem them.

 anyihing else you can define end procest I prefer :
think of compuler halforoce as like trick phecesraphy

 menss thaa you adumber of toruches ond enhence will heok, refardeu of whal system yous howin wait The \&impleat Iysters, are ikowe that depict object We will discuss such syutems in the present installment.

The wild polypon romer
At leave two compances are building image sydems thal will behave and respond like onrushing reality Such 1 wostem. hinked to cock pit-like controls, can
show a trainee pilke the delicate and precipitcus results of what he doess Realastic action, father than surface detaine tectriquues of aetion polygon halfione were originally developed by Generat Electice. of Sytacuse
$\mathrm{N} \boldsymbol{Y}$., and atc now also under derelopment at Link Divisoon of Singer Company (makers of the belowed pibot trainet ond its progeny). Hasically such syatems operate upon the scan-lines that criserosis a television
serem, swicting the color of the running san as it
 - curious bun effictive approach to hallione TV: their made enirely of convex polygons. To use only convex objects (no dents) means that one object may be in tront of enoxher or vice wersa, but never boh. (An
obiert with apparent indentations, such as an airplane. objert with apparent indentations, such as an airplance.
has to be made out of \boldsymbol{a} group of convex objigets flying logelher) To use only convex polygons (notehliess) makes it easy for the system to decide. at a given
instant, whether the scan is crossing the polygon or not.

 This work ewoived in par from Ges work in the would show a correct representation of the ground's
position, dipping and rutating. to the pilot of an aircraft in log or night In 1963 the Cieneral Elecrricgroup, under Rod Rougelot, worked out for Nase the
deiga of an "cdvironment simulator"-a device that desigo of an "environment simulator"-a device that
would simulate the appeatance and periormance of ny equipmens. This is now called the "old Nase syscm . It permitued the user-seated before a color TV creen-to work controls for an imaginary aircraft or pacecrafic and see roughly what the pilot of the craft color seene. Fitms made on this machine have been tunning. Imaginary ciues. roiler coassers and aecial doglights are amung the visions that can be presented.
Generat Electric's out NASA method is fairty weird if mot maschievous. The carlier "ground plane simulator" had shown an edge (the horizon) dieigially displayed on a citt the system was extended to many

The werne was represenied by a collection of edge boxes. physically jumpered inio a collection of facet
boxes. Esch edge box and facet box was londed with ererain numerical and logic values, representing edges
and facets in the scene. which could chante between and facets in the scene. which could change between in the preprocess for cach fr lem used a specially buill diquatall computer, the -vector calculator." This performed at great speed the
threce-pant vector calculations necessary to deetermine all screce positions, including the positions and slanis of all edges. Each individual edge generatur. loaded with its own edge position, constanty reported whether
the running scan of the picaure was he running sean of the picture was to the left or right
of is own edge. It duifully guarded this edge from border wo border of the piecture.

Olv NASA". melthod: Eact edge box constanily

The adge-box reporte summed into the facee hoxee combination of teft-right, thene-berlow reporrts. A1 the
 own facet was heing cronsed hy the kan-line. When
mone than one face-tox responded, the ounce nearest more than one lacet-Axx responded, the one ne Now Rougelot's group is replacing the old NasA
sytcm by a few Nass syolem, which works on entirely
 The old one could show seenes with up io 240 edpes: Lhe new Nass system will al least double that. GE's new metiod is strendy operaioosad on smaller resestch fa-
cifities. They dontt cell what it is, But basically it involves. worring by distance. Suppacedly the sory method
is gond enough to make the old edge boxes obsolete. The Link group clsims competitive performance for their sysem. which will go to black- -and-white thow
sand-line TV. They syy their sysuem is differen, beter, and sectel.

Campus of Fooled U. (GE)

Wylie-Romney: sboot the works
The Wylie-Romney method, disclosed in 1967, was the first gen merally publicized procedure for making halltone pictures. Indeed. the 1967 publication sig
nalied the explosion of the Universily of Ulah into the foreftont of computing research.
The Wylie-Romney method was actually the joint wond Alan Erabl! , ourdon R of the David C. Evan and Alan Ertahl; but much of the impectus for in sciences at Utah, who had long suspected the possibil ity of 3-D halfone synthesis.

Hallione lor art's sake now the arist can create
worlds and photograph them. (Gorcion Romney,
Uiah)
(Note: more output by
various Utah systems

The Wylie-Romney method is this: for each picturepoint desired in the final picture. shool a searchin where this searching ray hits every surface in its way Since the loceations in space of these hit-points are casily calculated, ligure their distances from the vanlage point. The nearcst of the intersections is the visibic output poin accórdingly This may sound ineff easy to asserlain all the piercint, it is comparatively faces to be hit in a given scanning row can be laggely

Jotin Warnock's method, also frum Ulah, is unrematicians like, as well as a certinas qual. Consider a syuare in the picture area. (As the start whether the present square is eniiscly filled with onc color. If so, output a correspponding syuarc all of that color. If the present square is not all one color. divide
it into tour smaller squares. Take another square and it into four smalkr squares. Take another syware and
go back to Now then. End the process when each of the squares in the broken-down picture has been complecely filled with one color--or the unsatisfied squares are too small to care about.

The method of Gary Waikins is the reult of a method-a polygon techiuver last emoust for the time enactument, but cheaper then the GEE-type syutema and now subject to the converxity restrictioma. They weem $t \omega$ have feund it
Each video scan of the scene results in a "alice
through suffaces in the scene. The two wearest writect through surfaces in the scene. The two nearest surfisce
are coninvoumy compared to see which is closet, at if by two ruikers. The instant a new surface becomes th ncazet onk, the sylem makes it the vigible one. Thi
nearest surface alwayk shom. down to the precise instant two surfices cross.

Watins method: A new nearest surtace is
inskanty yensed
of the closest two.

OW available: Machine running watkins technique, the Watkins gox, allowe color and manipulate them in real time See top of preceding page.

Shading: Last of the grent tedere-luactions
Suppose that we have some data structure represent to search out its visibite surfacts. How do we shate the oulput points's What do we take into acoount: ho combine the basic greys or colors, how blend them vantage point, or anything else we can think of? The arswer: any way at all. The combining function is an aesthecic choice. There are not many arcas left where you can make up a anticmalual hodge-podt tone is a felicitous exception: you can augnent b adding or mulliplying, diminish by subtracting or dividing, and yet always come up with an image resembling will recognite that this is like enlarging playing with parameters won't obliterate the pieture.
There are purists who insint that halfione coloration should exactly follow the formulas that simulate the training, this may often bedrue. But insisting on mathe matical acturacy as a general principle is like inssuing on ultra-high fidelity-an aesthe ic judgroent coucher ${ }^{25}$ a mechanical imperatio. for halfione Five years ago a computer could usually create haltione pistures only on a line primter or
4020 microfim plotuer. Today there are mand differe 4020 microilim ploner. ooday there art many differen
phowgraphic printers, ooing to all sizes of rilm and phowgraphic printers. zoing to all sizes of film and
paper: one even uses a laser. There are warious displa ierminals permiting grey-scale and color haltoone on TV scteens.
The age
The age of computer mage synthesis has begun.
Polygon systems are fat and simple. and will come Polygon systems are fart and simple, and will come
to be used in cur daily lives for such diverse purposes to be used in sur daily lives for such diverse purpone and visuatization of every kind of hayout and design.
They will be fundartentul to our new world oo
computer display. comouter display.

COMPUTER DECISIONS

SECOND ARTICLE.

Surface patterns.
Curvature.
Shadow.

THE PLOT SO FAR.
Various computer methods now make it possible to create artificial photographs of three-dimensional objects or scenes represented in the computer's storage. This is done by coloring or shading points in an output picture like the points in the scene that can be sighted through them from the vantage point. What the methods really boil down to, though, are searching processes in the data representation of the three-dimensional scene.

In an earlier article we have considered some of the techniques being used to depict simple scenes-- those made up of polygons. Now we turn to more elaborate scenes which add shadows, surface patterns and curvature.

One of the most interesting things about this branch of computer graphics-- already seen in the polygon methods discussed earlier-- is the variety of techniques that can be employed. Moreover, these methods, for all their sophistication, can usually be intuitively understood as thought they were operations performed on objects in space. The same continues to be true for the more complex systems.

MAGNUSKI'S PATTERNED CONSTRUCTIONS
A number of contributions have been made by individuals working alone. For instance, Henry Magnuski, at M.I.T., created a program that repeatedly positions patterned facets in space to make large constructions.

This program did not calculate "true" shadow, basing its shading partly on angle of surfaces. Neither does it show true curves. Yet it shows the impressive degree to which such effects may be approximated. The resulting beach ball picture is reminiscent of Moorish architecture.

SHADES OF REALTT

various new techniques permit us to add curves,
SHADOWS AND SURFACE PATTERNS
to Computer-generated halftone pictures

ENHANCED POLYGON SYSTEMS

In the methods discussed so far, we looked at several computer techniques for photographically depicting scenes and objects made up of polygons-- planar facets-- in a represented three-dimensional scene. Imaginary houses of cards, cardboard airplanes and triangular scenery take on a compelling vividness when depicted by the computer. And for visualizing such things as architectural arrangements, such systems promise to be of increasing practical value.

Those of us interested in the artistic aspects of computer halftone images want more. This article looks at some ways to add the appearance of curvature and surface pattern to computer-synthesized images.

Magnuski's constructions of repeated patteris
(different perspective calculations)

Basic triangle pattern...

is stitched together in adjacent positions at appropriate angles.

BOUKNIGHT AND KELLEY:
PICKING THROUGH A CAT'S CRADLE
The method of Bouknight and Kelley, at the University of Illinots. permits the addition of shadow to polygon pictures. Their method uses an intricate system of scanning sweeps across the scene, analyzing the successive edgecrossings. For each output line, a list of the edges in the scene is ordered according to which will be next encountered. To make a specific output line of shaded points, we step through successive positions of the scan-line, until an an edge is crossed. With each edge we cross, we enter or leave at least one facet. Of all the current facets we are in after a given edgecrossing, the system finds out the neareat one the visible one, by comparing distances. The coloration of this facet is then fed out to the picture, until the next edge-crossing.

Bouknight and Kelley expand their method to show shadows by an additional step. They create a new list of edges to be encountered, this one relative to scans from the light source. Then, during the regular output picture scan. they look to this latter data to see about shadow As soon as they know two consecutive edges of a visible object in the picture, they are able to search the shadow-edge list to see if any shadow-edges impinge between them. The final list of edges-- visible facet edges and shadow edges-- goes to the picture output device.

BOUKNIGHT-KELLEY METHOD

Consider the series of edges whose projections cross the current scan-line. Each time the scan-line crosses an edge, fod out what facets are currently pierced by a sight-line from the viewpoint. The nearest of these facets is the visible one.

To add shadow, use an extra list of the scene's edges relative to the light rather than the camera. Between viewed edges, check for shadow-edges as well.

Don Lee, at the University of illinois, produced his fine-toned pictures of spheres in 1966 simply because someone bet him a quarter he couldn't program the method he'd suggested in twenty-four hours. He almost made it. He made his pictures of spheres and polygons by calculating the boundaries, then checking for overlap and filling in with greys according to viewing angle. His program works only in special cases, but is interesting for its historical position; it was one of the earliest half-tone curvature systems.

have a ball with don lee.

Then fills in
curvaceous
shading.

SIMPLEX CURVATURE SYSTEMS: MAHL \& MAGI
A fundamental type of system we may call the "simplex" system was exemplified in the previous article by the Wylie-Romney program. A simplex technique simply projects simulated rays toward the scene from the vantage point till they hit the represented objects, and fills corresponding positions on the output picture with the colors encountered on the front surfaces of objects in the scene.

The same principle extends naturally to scenes with curved and otherwise embellished objects.

Robert Mahl, at the University of Utah, has recently reported his results with simplex methods using quadric surfaces-- those curved surfaces generated by mathematical powers of two. His pictures-- like the cup and saucer shown here-- have a pleasing 1920s Bauhauslike quality.

One problem with this method is that computational complexity increases rapidly as the scenes grow more complex; the more surfaces and piercing-points, the more time-consuming (and expensive) it becomes to make the picture.

mahl's simplex method

-

An early magi character.
-

Magi program was originally developed for study of radiarion hazards inside
 techniques were a side effect of the approach chosen. Who know. these tanks may be the ones studted.

MAGI techniques were used to study alternative ways of lighting mines.
objects composed of planes and quadric surfaces; and includes, as will be seen from the racing car and chair, colored surface designs, shadows and spectral reflections. Not only does MAGi's software for this process produce delicately shaded pictures; if the virtual pictureplane is moved until it intersects the subject. it produces a cross-section.

MAGI runs this program remotely in Fortran on a big computer-- but they have their own minicomputer setup for photographing the results as color movies. They now offer use of this system commercially for making movies or stills.

SYNTEVISION SETUP uses remote time-sharing computer running big secret Fortran program and containing entire data structure of three-dimensional scenes. Minicomputer photographic setup is on premises at the Synthevision inervice. MAcion

Local setup ues Hova minicomputer controlling both CRT display and camera. Informed guess would sugsest that time-sharing system does not send all and transition values; Nova program would then interpolate gradations in relatively quiet sections of the scan-line.

MAGI's precise system is secret. However, the only real questions boil down to: forms of surface repof scene scaning to produce outputscan

Note that one of the most impressive things about Magi work, at least for sophigticates, is the degree of artistic control that seems to have been realized in their input and revision systems. It seems they offer excellent control over motion and color, and, of course, revision of the action in Popular Science, I think it was, had a spread on

Enlargement from magi film. I hope the reproduction shows the concentric rings, called Mach banda, that divide (citation p. DMg; Knowlton and Harmon candow techntques for correcting this

ROUNDUP
These have been some of the highlights of the halftone game to date. The methods described so far are mainly software-oriented, and for the most part work most efficiently as prooutlandish new forms of equipment, under construction or proposed. for dedicated production of $3-\mathrm{D}$ halftone pietures.
special equipment is now being bullt FOR MAKING "REALISTIC" halftone FOR MAKING REALURES BY COMPUTER. THIS ARTICLE PICTURES BY COM THE MORE UNUSUAL COVERS SOME OF THE MORE UNUSUAL HALFTONE HARDWARE SYSTEMS
EXISTENCE OR BEING PLANNED

HARDENING

 OF THE ARTISTRIES
HARD TIMES $A^{\prime} C O M I N{ }^{\prime}$.

In two previous articles we have summar ized some of the important basic techniques in computer halftone-- the artificial construction by computer of photographic pictures of 3-D scenes. scenes which are represented within the computer as colored or shaded surfaces placed in a coordinate system of three dimensions.

The techniques we have looked at were all intuitively "spatia]" in character, having to do with the analysis of sight-lines and relative edge positions, and suited to implementation in computer software. Now we turn to some more advanced and peculiar techniques and equipment intended to make 3-D computer halftone faster to use, or more realistic, or easier to work with, or cheaper. These systems represent a coming generation of halftone hardware.

\Rightarrow Can the an aceident that
thes curvaceoves systen was workel out by . Frenchman?

GOURAUD'S TWIST adds the appearance of curvature to a faceted object shown opaquely by the Watkins method (described in first article).

Instead of shading each point within a facet with the same color, interpolate between the vertex-colors according to how far down the edges you've gotten. Note that the jagged edges are retained.

THE WATKINS BOX

The University of Utah is now building what wil be for some time the world's most spectacular interactive computer display, the Watkins Box. This device, interfacing between a computer and a television screen, will carry out the Watkins algorithm (described in the first article of this series) in real time: ripping through a predigested list of facet information, the Watkins Box will create on the screen an image of an opaque object which the user can rotate or see manipulated by program.

The Watkins Box can operate in two modes normal mode, in which the object appears faceted, and Gouraud mode, in which it appears to be curved over (see masks, nearby)

The Gouraud algorithm, developed by a graduate student of that name, is a ridiculously simple technique which marries perfectly to the Watkins method. Instead of shading the facets uniformly, this technique calculates a shade of gray for each point. In effect the method interpolates the shade of the point from those around it, across facet boundaries. In actual procedure, the Gouraud method shades a point by linear interpolation between two edge-colors: linear interpolation between two edge-colors:
the color of the last edge and the next edge to the color of the last edge and the next ed
be encountered on the present scan-line. (These shades are in turn found by linear interpolation between their endpoints.)

It will be noted that Gouraud's method does not curve the edges. But considering its simplicity as a small addition to the Watkins box, that's no great sacrifice.

Naturally, the Watkins Box will not reach the private home for seversl years; current likely price is in six figures. But that's now

GOURAUD'S SPECIAL TWIST
pra's world-view Roger Boyell, of Pennsylvania Research
Ansocisten. Philmalphia. likes to refer to the company's main interest at modelifing the phys-
fcal world." Thus he and his atsoctates have loct world." Thus he and his associates have
 plex radar syatema.

A radar simulator they are putting together for the Navy will show the renulis of any possible radar syatem moving over any possitle terrain. A pilot or navigutor trainee, in a simmulated cockpit, will see the misalon's changing radar picture as he changes the plane'z course or the radar's suning. The raciar pleture, sp-
pearing on a acreen and changing in real time. pearing on a acreen and changing in real thene, a real mission-- nying in pernpective among mountains or valieys, high or low, at any bearing and specd. and virw through any type of

Boyell's approsch is to treat each contpoent of problem. to be handled in differen separate problem, to be handed ander, a core ways. and blended in a minal television. Sepa rate mechanisms supply components of shadow specular reflection. coloration and randomizing flects. The core buffer continuously refresh e scanned CRT display

Boyell has put the same techniques work making simulated halfone pictures of the tems use the same type of halfone image syntheis. even though superficially they seem quite different. But radar is radiation. juat like light. and Boyell's techniques of three-dimensional modelling and search spply equally well to dection by reflected visib pone images.

Boycu's terRarium
didem
Ref enesemise

$$
\begin{aligned}
& \text { picture) } \\
& \text { at-a-time to mividual feng eliankine viev. }
\end{aligned}
$$

 that will knock equeral people at
 Co color scraens (aodified Sony Trinicrona)
ulth shaded pol ygon halferone, offering ulth shaded pol ygon halfcone, offering
pseudo-curved shading like Couraud's (aee arifer).
The techniquea were worked out by Ron SWallow, and they're not telling about how
they work. It ix clataed, however, that thei
reat-time picture generator handea sceneg with 16,000 edges nnd that this will cost
S 150,000 and service 16 (or was fe 64) user terminals simultancously.

It may have been a bad phone connection,
this may be what they're realiy cialning.
obviously tet it be really great lf it surns
out to be real.
Evidently they have in aind the use of such highoperformance scoper for teaching, allowing stoulents to explope intricate three-
dimensional scenes or objecta. Tercific.

Sote: compare the claim of 16,000 edges
on siso, 000 ayentem with the 2000 (?) edges allowed by the old tish systen buite by GE,
or the Watkins Box-- I don't know how dany or the Watkins Bax-- I dontt know how any
cdpes-- at s500,000 from fivans and Sutherland
the shape of things to come
If these systeme mound far- tetched. or only for theoretical inveatigtation, consider this: the
Air Force in now letilng contrncta for en ed vanced ntght traintng nimulator that is a small boy's dram. To be gituated in Dry Lake.
Arizona. the simulator will heve ine mone Arizona. the simulator will have the moot reat-
istic sockpphat ever built: tha entire mockup will
turn and tilt in response to the turn and tilt in reaponse to the uner, and the
 acceseration and welghtlenknesn. The cockpits
alone, without the vinual dieplay acreens, will alone, without the visuas diap
 whoee mountains and mandows and chouds he parts of a dodectiodron in an entire visual surround. will show him the changing terratn and hying environment. Each of these CRT, Will be ariven by a real time perspective haifone simulator, with all displays spliced to
gether and driven by a master simulator responding to his actions. Whe will build them is not yet decided; they could be Warnock or GE boxes.

The sheer joy of such a system will be hard to beat. But no doubt others will be on
the way-- perhaps at the amusement-park level.

The new pllot trafiner will not only suln and dip in response to the controls; on
six filant CRTs, with optics in front that focus the eye on infinity and connected co the seams. the pliot will sen a res
ponding perspecrive simulation of the ponding perspective simulation of the
word he is flying through, plates he in
donfighting with, and whoknowat-- witches? dortightin

NELSON'S FANTASM:

A LDT OF BOSCH?

Idon't expect you to believe this. because not even miy patent attorney does, but the system call Fantasm is intended to make pictures that pass the Turing-test: you won't be able to tell
them from real photographs. Fantusm is intended to allow the user to make realistic, Hierony mus Bosch-like phatographs and movies, with real-looking people (and scenory, imaginary haracters, monsters, etc.) in scenes of arbirary complexity. It is expected that 1975 eec nomics will make its construction teastble

Fantasm I originally conceived as a method making realistic photographs and movies. not knowing at the time that this was impossible, ut feeling it could be done somehow if the problem were broken down sufficiently. At roken was not clesr which of us would be

It occurred to me sometime in 1960-1 that mputer-interpolated. Disney-type cartooning rethods would be fessible. After some though rossible, and drouped the cartoaning wauld be trange behavior of people whom t told about The his led me to increasing secrecy

The general goal was to make a aystem that could do realistic movies without scenery actors. and make pictures indistinguishab actors. "What do you mean, indiatinguishabl rom photographs?" people keep asking. What do they mean what do I mean?) The surfacea "puppereera," and "sculplors," animated by puppeteera," and photographed by a "director. the utter imaginative control of the crestive user

I am indebted to Frof. Charise Strause
for the formalisation of my amoothing-

FANTASM at last partalley revealed,

 through array. Steering aignal and returnad surface paramator
 The Fantasa scene Machind tha representation and basch

 Chantig, fili-in by Buliet search, eniagtion cominulty masgenent

The system could come in a number of dif array of LSI computing modules (the checkerbosrd Scene Machine) to be guided by special hardware under an unusual monitor running on a general purpose computer. The checkerboard Scene hachine holds a great spread of surface data. is a logical eusell boundaries, to electrical explorations of the shapes represented in it. The resulting trace makes various 3 -space explorations on the faces, mountains or automobile spreadeagled in it. Think of its trace as a radio-controlled Cirefly skating over a bumpy
checkerboard. Using this machine, and various art's-cradle list structures based on the geometry of light around odd volumes of occultation. the problem of halftone analysis of arbitrary shapes is solved by brute force rather than analytically. A variety of other processes have iso been defined in or

As far as 1 have been able to leam. Fan tasm is the most baroque computer graphic system anyone has proposed. It is not intended to oper ate in real time, but rather take as long as it needs, or as long as the user wants to pay for tions. curlicuea, leaves, hair, etc. It is best suited to the production in Panavision of Busby lerkeley musicals, or "The Lord of the Ringe with realistic wraithe and interspecies battles. But it inay well cost too much to use for that.
Indeed. its coonomics seem to improve in low indeed. its ceconomics seem to improve in there its output bendwidth will flower unseen. But the Scene Machine should also be useful for more mundane applications, such as contour mapping, automoblle deaign, advertising photo-
graphy and medical illutitration.

COMPUTER IMAGE'S MAD WHIRL

so far we have simmarized and distinguished among THE MAJOR TECHNIQUES POR COMPUTER SYNTHESIS OF TMAGE FROM DiGitally stored repronentaferent but related

WE NOW TAKE THE WRAS FROM
SET OF TECHNIQUES-- THE SYSTEMS OF computen imace corporation
Lee Harrinon ilf got the fdea for what in
now Computer tmage Corporation in 1959 . Al
rendy having an art degree, he went on for a
 degree in electrical engincerting, and itroygh
long lean yearat put together the techntcal buaics arouter which corporation ts now a golng concert pule output trom their systems. especially Sce
imate, is now widely visithe on television.

Computer Image Corporation seems to be the first nrm to be commereitaly sucesid be
the halfone field. Whether they should included with the others is arguable, however Thetr syatem are not widely understood, and the relation of hese aystems these articles is problematical. Among the few who understand their techniques. some argue thal they do not oynthesize images at all. but rather twist pre existing pictures with a sort of Moog synthesizer and that their analog techniques are really just I think that this view is wrong. at least as regards their most ambittous syatem, and that CI's lechniquea descrve review. All the world is not digital. Ci systems do fill up areas with grey-scale (and other) pictures, and their
tems involve three-dimensional coordinates. oceulation and coloration; thus 1 think in ap propriate to discuss them here.

The following discussion is the first. I selieve. to lift the veil of secrecy that has hit work. In the light of the extreme sophistication with which they have pursued extremely strange tecturiques. they ahould benefit from the wider understanding. Wote that this material, whic careful TV watching, is partly conjectural.)
Computer 1mage's systems represent an nistng approach brilliantly tollowed through.

All of Cr^{2} s syblems are atrange combin ation of closed-circuit TV and analog components out of a music synthesizer: oscillators, potenmechanisms are the same for all. but they are carried to different logical extremes, with differing aceoutrements, in the four systems. They all seem to be based on the extraordinary Animac 1 , not yet implemented; it would seem that for business reasons the company decided to raise money promoting simpler systems, so
its bread and butter now consists of two less ambitious systems, Scanimate and Animac $t_{;}$ both of which might be puzzling if not recognized as parts of a more elegant whole. It would seem they were designed backwards as poreffa recon Animac II, aa was CaESAR, their

The extraordinary ramifications and varfeties of this system, with alt its electronic jaded technical imegination.

At the heart of the Cl systems is the principle of filling aress of a CRT screen with an oscillating trace. This is a principle common
to both Lissajoua figures and television: but oboth Lissajous figures and television: bu Computer image has elaborated it pecutiarly. wiggle sections of superimposed drawings, creat moving filigree effects, and hope to animate whole gro
3 -space.

Consider an oscillating trace on an oscillo-scope- This is a two-dimensional oscillation, having two signals, x and y. But a three-dim signal. z, can be interpreted us a third third signal. 2 , can be interpreted as a third dimen-
sion. meaning that a ppoint of light is whirling out some pattern in a three-dimensional apace point moving. so to speak. Let us call this

Now to vie down to two dimensions. By we need to cut the traces we can view the oscillotank ine of axed ways: but by creating a "view calculator," a box performing certsin perspective transfor we may obtain three signals of the space trace, movable vantage point. This is an $x-y$ from which we may put on an orainary oscilloce

Let us now add one more signal, b for brightness). This is the brightness signal fam
Hilar in television

Brightness of the spot ta thus independent of the movement of the apace trace. For example the space trace could describe a helical path. A apinning to phate with and we could time its apinning to phace with a TV slgnal. If we now
brighten the space trace only with ness signal of a TV plekup, we now will see din our view of the oscillotank) what would book The difterent Cl agta is effect.

Oulput from all those aignuis is ordinarily ploked up by another vidicon. Which ztabilizea is by converting it inte conventional television

 extentive
 A way as to matte over dravn
artwork-amantine wignilng
other drnun artuorkthrough
octher draunatipulation

THE WHIRUNG UNIVERSE OF COMPUTER MAGE CORPORATIAN.

SHAFING METHOD

 Ond that the reavitung vubean ind

x^{2}

cultatio

A last Ct lechnique, technically minor bu hadowing among separate objects. Thing is the ie of a atoruge CRT tube on which every Iram painted (from the viempoint or from the light CRT, nearest inings first; and the return siknal rom the screen tells whether the apsee trace it rossing an area already painted during the iramm. The tube's output mignal then effectively
conatitutes a silhouette. Thas clue Indicaten that the npace trace should not be visibib; and nence is used to cut off brighthess while the trace is within the already-rilled ares. This gates etwean two destred objects or pleturex, torepoint of vlew of the light, It gaten shadow: the signal is used to control the relative brightnens of the shadowed and unahadowed featuren of a
has been put into these ayatems by CI's inger has been pur into these syitems by $\mathrm{Cl}^{2} \mathrm{~s}$ ingen
ious engineers. Coloration of the final videc signal is added by gating color levels under control of the brightneas signal. pernitting ple-
tures with several grey-levels to be translormed to up to four raintrow hues. Separate shapen described by the apace trace may be indepen dently moved and jointed at the same time: Harrison pointedly calls such separate shapes
"bones."
Darkening at the backside of a spun a hape. or brightening at edges of a painted por tson. and brightening in proportion to curl, are all strange capabilities of this machine. Lipsynchronized mouthilike motion can be imparted to any part of the shape spun by the space trace
(whether or not a mouth is painted on it). by an audio detector feeding directly to the circuitry from a 1 live mike. And the limbs of Ci's ghostly ngures can be made to swing by connection of sensors to the animators themselves-in a living pantograph.
sCANIMATE is a popular device now widely used (at Cl^{\prime} 's studios) for the making of TV comtheir simplest system. used for the conversion and discombobulation of that artwork. In Scani mate, the space trace is controlled by handoperated potentiometers. Two separate oscilhato
settings are available. so that the space trace settings are avallable, so that the space trac
can have twa separate oscillation patterns. spinning out two entirely different virtual shape in 3 -space. A hand-throttle eases (rom one oscillator setting to the other. This permits a nippedt to go from whirling around to a sort of hulsp and many more effects. The picture painted on it may be scen to roll on invisibl spindles, bloom into fountains, or undulate as pennants-- all by modulating the brightness of the flying spot as it traces its unseen shape. This shape, in turn. can move betwoen its two forms under conirol of the throtte.

Animac I (usually called Animac) provides greater flexibility in controling the space trace
The system's oscillations are controlled by an input vidicon, which artists may quickly modify with pastel check at the pickup. Ghostly tubuligeling filigrees arc among the possible doodles.

CAESAR, their newest system, is oriented toward Yogi Bear-type animation. The artist's cack rround or and all ground or each other. Tral-time control by the user.

But it is to Animac It that these curiosities What Harrison calls the "Snow White Capability" of Animac it will permit the sculptur full humanoid puppets, with perhaps thirty easting shadows, colored, moving and talking.

Two young fellas in a Manhattan loft,
Mesars. Rute and Ecra, are offering :

The only preture rvo bean able to Animac il ite this firame, blown up fras al

 are clearly uinible in the fila; the figure

 of $\$ 150,000$.

WHAT ABOUT REAL THREE-DIMENSIONAL
DISPLAY?
In science-fiction stories you hear about how objects are made to appear as if they're standing in the middle of the room. For instance, 1 believe that in Heinlein's Stranger in a Strange Land they watched a "tank" in which things appeared.

Well, a lot of people have thought about this, and it's not so easy as you might think.

One interesting scheme used a sort of translucent propellor, spinning rather fast, on which computer-generated images were projected from below. It was done by the dotting method, so that a bright dot of light would appear high or low in space depending on whether it was projected on a relatively high or low point on the propellor.

This was interesting but had numerous disadvantages-- not the least of which was the danger of the thing flying apart. (Translucent materials tend not to be as strong as, say, metal.) Another basic problem, though, was the fact that any given point in the space could only be displayed at a given time, when the propellor's height in that region was just right, and that meant that at that given instant you couldn't display any of the other points that could only be displayed at that instant. A considerable disadvantage.

Probably the most astonishing 3D display is Sutherland's Incredible Helmet. This consists of a helmel with two dinky CRTs mounted on it, each being driven in real time by a perspective system (such as the LDS-1) and set up with prisms to the wearer's eyes. Through the prisms the wearer can see the real world in front of him. Reflected in the prisms, however, and thus mixed into the view of the real world, is the glowing wire-frame being presented to him-- in perspective, and with its separate views merging into an apparent object in front of him. But he need not stand still: as he moves, the helmet's changing position is monitored by the program, and the display system changes the views accordingly meaning he can walk around and through a displayed object. The illusion, and the possibilities, are fantastic: imaginary architecture, explanations and diagrams of things in the room, poetry that changes as you walk through it, ... well, you work on it. Not available commercially.

Lou Katz, of NYU, put old-fashioned thereopcicons up to the CRT, and displayed two separate Works fine, even with

Bob Spinrad of Xerox Data Systems has patent on displaying 3D from a computer through an ordinary color TV. Assuming you're using some standard way of refreshing the TV-- des cribed elsewhere-- the image for one eye is displayed in green, the other in red, and you look through red and kreen glasses. The wonders of modern science. Spinrad chuckles over it himself.

Another scheme glued silver Mylar to the front of a loudspeaker, then played a soft hum through the loudspeaker to pulse the Mylar back and forth. Then you used that as a mirror to look at what was going on the CRT-- which was showing a lot of points at odd places that would appear to be in space. Unfortunately this was hard to coordinate, and. like the propellor, often required you to put dots in several places at once, which don't work.

For a while you could get-- maybe you still can-- a three-dimensional computer output device. Here's what it did: it created objects showing data structures that had three variables. (It didn't make wire-frame objects or the like.) Automatically ejecting wire through a styrofoam block, and snipping the done ones, it created little mountains showing three-dimensional data. Very cute. Since many people have problems with mountainous computer data, it probably should have caught on.

Then a lot of people mumble the word "holography," as if that is going to settle something. While holograms are terrific and remarkable, and have been produced on computers, making them is not a process that can be carried out decently on sequential machines-- let alone making them in real time. So if a solution to interactive three-dimensional computer display is going to come through holography, it means a whole new batch of technology will have to be invented.

My friend Andrew J. Singer, who comes and goes in the computer field and is one of the five or six smartest people I ever met, says he knows how to build a display tank, and I believe him. He explained it quickly to me once and I asked him to tell it again, but he just said sadly, "What's the use-- there are so many great things that could be done..."

FOUR DIMENSIONS, EGAD
So much for three dimensions. Now, some readers are bound to ask, "What about four dimensions?" because they are science-fiction fans or troublemakers or mathematicians or something.

Just as we can make a two-dimensional picture of a three-dimensional object, it is possible, dear reader, to make a two-dimensional picture of a four-dimensional object.

What is a four-dimensional object?

Why, any object that has four dimensions, (thanks a lot, you say), or even four measurable qualities, such as height, weight, age and grade point average. Well, let's not get into that, but it turns out that views of such multidimensional structures may be obtained by the same homogeneous matrix techniques already mentioned for regular perspective calculations. Rule of thumb: however many dimensions your data has originally, you add one more dimension, homogeneous with the rest, and there exist formulas (sorry, I don't have them) for view calculation.
(Note, of course, that while a two-dimen sional view is a picture, a three-dimensional view is a three-dimensional object-- you'll have to view it on an interactive 3 D computer display of some kind.)

From videotape, "The Hydrogen Atom According to Quantw Mechanics
by T.J. O'Donnell \& David Parrish.

It is usualiy hard to combine things: especially complicated technical things. Usually it takes infinite reconsiderations, finagling, modification, intertwingling.

The Circle Graphics Habitat, however, is something else again. It results from two intricate, independent technological developments, each an intricate system carefully crafted by an exceptionally talented person, coming together like two hands claping. Like ham and eggs, like man and woman, Sandin's Image Processor and DeFanti's GRASS language conjoin directly and interact perfectly as if they had been made for each other, which they were not.

Dan Sandin's Image Processor (see p. 9m8) is a system of circuit boxes that allow video images to be dynamically colored, matted, dissolved and palpitated; Tom DeFanti's language (see "Coup de GRASS, p. DM 31) permits the rapid creation, viewing and manipulation of three-dinensional objects on the screen of a particular computer setup.

To combine them, you just point Dan's system at Tom's system.

Let's say that on the screen of Tom's system we are viewing an animated bird, flapping its wings. Since it's being shown on a three-dimensional refreshed line display (see pp.gM2r-3,bm30), it appears only as white lines on a dark screen.

Dan merely points a TV camera at Tom's screen, and runs the TV signal into his Image Processor. Now, in the Image Processor, he gives it the magic of color. Different colors, interplaying with gradations and subtlety.

From the Image Processor, the finished signal goes out to videotape recorders.

What then have we overall? One of the world's most flexible facilities for the rapid production of educational videotapes.

To explain something, you create a three-dimensional stick-figure "model" of it, using DeFanti's GRASS language. Then you make a videotape of it, showing rotations or other manipulations, using the Image Processor to give it color.

DeFanti and Sandin have spent much of the academic year '73-4 getting the kinks out of this procedure. (Many of the difficulties stem from the unreliability of videotape recorders.) Stills from some of the first work are shown here.

BIBLIOGRAPHY

Thomas A. DeFanti, Daniel J. Sandin and Theodor H. Nelson, "Computer Graphics as a Way of Life." To be presented at U. of Colorado computer graphics conference, July 1974; to appear in proceedings purportedly to be called Computers and Graphics.

THECIRCLE GRAPHICSHABITAT

From videotape,
"The Number Cruncher," by TDF \& DJS.

The Tissue of thought

Uneducated people typically think of education as the learning of and skills. While facts and skills certainly have their merits, "higher education" is also largely concerned with tying ideas together, and especially alternative structures of such tying-toge cher: with showing you the vast un-
certainties of things.

A wonderful Japanese film of the fifties
called Rasho-Mon, It depicted a specific was called Rasho-Mon, It depicted a specific event-- a rape-- as told by five different people. As the audience watches the five se really happened.

The Rasho-Mon Principle: everything is like that. The complete truth about something never known.

Nobody tells the complete truth, though some try, Nobody knows the complete truth.
Nowhere may we find printed the complete truth. There are only different views, assertions, supposed facts that support one view or another but are disputed by disbelievers in the particufacts," but their meaning is often in doubt.

The great compromise of the western world is that we go by the rule: assume that we never know the final truth about anything. There are continuing Issues, Mysteries, Continuing Via-
loges. What about flying saucers, "why Rome loges. What about flying saucers, "why Rome welt know Pearl Harbor would be attacked?

Outsiders find the intellectual world pompols, vague in its undecided issues, stuffy in its quotes and citations. But in a way these is what many find exhilarating about the intellectual world. The Scholarly Arena is simply a Circus Maxims in which these battles are sheduped.

Many people think "science" is free from all this. These are people who do not know much known, true; but it is repeatedly discovered that some scientific "knowledge" is untrue, and this problem is built into the system. The important thing about science is not that everything will be known, or that everything unanimously believeed by scientists is necessarily true, but that science contains a system for seeking untruth

This is the great tradition of western civilization. The Western World is, in an important sense, a continuing dialogue among people who have thought different things. 'Scholarship" is the tradition of trying to improve, collate and resolve uncertainties. is ever closed, no interconnection is impossible is ever closed, no interconnection is impossible the thoughts and minds themselves, of' course, do not last. (The apparatus of citation and foot note are simply a combination of hat-tipping, go-look-if-you-don't-believe-me, and you-might ant-to-read-this-yourself.)
"Knowledge," then-- and indeed most of our civilization and what remains of those previous-is a vasty cross-tangle of ideas and evidential materials, not a pyramid of truth. So that preserving its structure, and improving its accessi

Which is one reason we need hypertext and hinkertoys.

Presentatoink sequences ARE ARBITRARY

FLOWERS SIMS BEES
FLOWERS P PEOPLE F BIRDS

A Io t 4 people are frit to ask questions
Bot the dumb ting" not akin questions.

HOW TO LEARN ANYTHING
by bright people tho want, these are the techniques used by taking courses in it. It's the way Phi. other than a second field, it's the way journalists and "geniugon" operate, it brings the general understandings of a field birthright; it's the way anybody can learn anything, if he has the nerve.

1. decide what you want to learn. but you cant know exactly, because of course you don't know exactly
2. READ EVERYTHING You of π, enjoy, since that way you can read more of it and faster
3. GRAB FOR INSTGHTS. Regardless of points others are trying to make, when you recognize an Insight that has meaning for you, make it your own. It may have to do with emperor, or the quirks of a Great Man in the Field. Its importance is not how central it is, but how clear and interesting and memorable to you. remember it. Then go for another.
4. TIE insights together. Soon you will have your own string of insights in a field, like the string of light e
5. CONCENTRATE ON MAGAZINES, NOT BCOKS. Magazines have far more insights per inch of text, and can be read much faster. attention on 14 .
6. FIND YOUR OWN SPECIAL TOPICS, AND PURSUE THEM.
7. CO TO CONVENTIONS. FOL same reason, conventions are a splendid concentrated way to learn things; talking to people helps. Don't think you have to be anybody special to go to a convention, just plunk down your money. But you have to have a handle. Calling ourself a Consultant is good; "Student" perfectly honorable.
8. "FIND YOUR MAN." Somewhere in the world is someone who will answer your questions extraordinarily well. If you find him, dog him. He may be a janitor or a teenage kid; no
matter. Follow him with your begging-bowl, if that's what he wants, or take him to expensive restaurants, or whatever.
9. KEEP IMPROVING YOUR QUESTIONS. Probably in your head there are questions that don't seem to line up with keep adjusting the questions till you can get an answer that relates to what you wanted.
10. YOUR FIELD IS BOUNDED WHERE YOU WANT IT TO BE. Just because others group and stereotype things in conventional ways does not mean they are necessarily right. Intellectual subjects are connected every whichway; your field is what you
think it is. (Again, this is one of the things that will give you insights and keep you motivated; but it will get you into trouble if you try to go for degrees.)

There are limitations. This doesn't give you lab experience, and you will continually have to be making up for gaps. But for alertness and the ability to use his mind blinkered and cliched to death within the educational system. bibliography
Wismar Shires, Children of the Atom.
Science-Fiction about what a school could be like where kids really used their minds. I've always been sure it
was possible; the R.E.S.I.S.T.O.R.S. (see p. 47) made me surer.

"ON WRITING," a.paradism \& the creative process

being an examination of some very complex matter which Nobody Seems to Understand; and whose Generality of Relevance may be Gradually Apprehended (Eventually i hope to develop a somewhat more formal reatment offels, But there is certainly no ro for that here. (Logicians: show me the truth-table of "bur.")

The process of writing is poorly understood in most quarters Many working writers despair of being "systematic," getting things done as best they can. On the other hand, people who think they might be able to contribute-- particularly the symbolic logi cians and transformational linguists-- being inmersed in their own tried to talk to them

Writing is not simple. As with vision or speech or riding a bicyc
sued.

Some people think you make an outline and follow it, filling out the details of the ourline until the piece is finished. This is absurd. (True, some people can do this, but that is simply a
shortcutting of the real process.) Basically writing is
the try-and-try-again interplay of parts and details against OVERALL AND UNIFYING IDEAS WHICH KEEP CHANGING.

In fact a number of things are happening, of ten simultaneously.

1. Provisional development of ideas and points:
A) forming overall organizing ideas, B) selecting tentative points; c) inductively finding overall organizaion among them; D) finding relations of interest between points.
2. Complex sifting and adjustment among collections of points,
overall ideas.

3. Fine splicing within developed sequences. A) transition and juxtaposition managements, B) crosscitations, C) smoothing.

Regrettably, there's no room or time to pursue this here. The article 1 had intended to write would take a whole spread. For people who really care about the matter, I will make some points in very abbreviated form

The interesting structures in written material include:
"Points"-- pieces, sentences; phrases, examples, plot events, and expository "points."
organizing principles and structures (which we will call here arches -- final ironies, things to be led up to, themes, ganizing titles, overconcepts. These may be either local or global, over the entire work. (Note: arches may not be heirarchical relative to one another.)

Now, we may think of points and arches as individual objects which have individual relations to one another. Between two points there may be a good transition; a specific point may link well to a specific arch.

The problem in writing, then, is that overall structures you choose (systems of arches) may not link well to the points that have to be included anong them; and that transitions between points worked work out the way you want them to. Good transitions can't be natively, fhere are sequence of points you want to make, or, alteratructure of points, and picking among them involves difficult choices-- especially when you have to devise appropriate arches the basis of the final sequence of points.

There are a number of other important structures in written material. They include accordances, juxtapositions, cross-citations,

路
The only ones we will discuss here are accordances.
The term "accordance," as I shall use it here, is simply a vaguely formal way of talking about whether things match or fit together. Two items are in accord if they match or fit well, or in points (as mentioned early) represents an accord, and a good link between o point and an arch is also an accord.

Now, it happens that a great deal of writing is concerned with notes to the roader about accordances in the material. In fact, to the reader the accords and discords within the expository eng out of what he is reading. We may call these accordance-connectives or accordance-notes.

Two of the most basic terms are indeed and but.
The word indeed has an intexesting function.
The word indeed (in its main use, at the beginning of a sentence) ndicates an accord between what has just been said and what is to follow. In other words, it functions as a positive transition, impealready indicated. So do the words thus, then, therefore the direction already Indicated. So do the words thus, then, therefore, moreover, so and furthermore ${ }^{\text {the }}$ between two items. We also see prefix accords, such as since, inasmuch as, insofar as; these have to be followed by two clauses, the second of which is in accord with the first.

The word but is exactly the opposite. It indicates a discord or contradistinction, a negative transition, "brakes" in the flow. Other such infix discords include nevertheless, despite this, on the other hand, even $\frac{\text { so }}{}$, and "Actually, ..." Similarly, there are prefix disords: while, despite, though.... notwithstanding.

I find this topic of inquiry very interesting. These sorts of terms have been used since time immenorial by writers adjusting their transitions for smooth flow (note such antiquey variants as haply, structure of this service has not, i think, been generally understood.
(Note also that there are more intricate accordance-connectives:
 ... if not... , ... otherwise... Anyway... and Now.....)
(Note: the try-and-try-again revision and reconsideration process, tinkering with structural interconnections, is a universal component of the creative process in everything from movie editing to machine design. There ought to be a name for it. 1 can't think of a satisfac tory one, although I would commend to your attention grandesigning, piece-whole diddlework, grand fuddling, meta-mogrification, and structure in clouds).)

THE HERTTKGE

The past is like the receding view out the back of an automobile: the most recent is more conspicuous, and everything seems eventually to be lost.

We know we chould save things, but what? Those With the job of saving things- the libraries and mu-
seums- save so many of the wrong things, the fashionable and expenslve and hioh-toned chings esteemed by aiven time, and most of the rest slips past. Each generation time, and most of the rest slips past. Each generation fore, but of course this can never be a guide to what should be saved. And there is so much to save; music, writing, sinking Venice, vanishing species.

But why should things be saved? Everything is deeply intertwingled. We save for knowledge and nostaigia, but what we thought vas knowledge of ten turas to nostalgia, and nostalgia often brings us deeper insights that cut across our lives and very selves

Computers offer an interesting daydream: that may be able to store things digitally instead of tal storage (see Hypertexts, pr 47 t); digitize paintings and photographs (see "Picture Processing, p, sh/0); even digitize the generic codes of animals, so that species can be restored at future dates (see "The Mitiest Computer," p. 60).

Digital storage possesses several special advantages. Digitally stored materials may be copied by automatic means; corrective measures are possible, to prevent errors and they could be kept in various places, lessening mankind's dependence on its egss being all in one basket (ilke the Library at Alexandria, whose burning during the occupacion of Julius Caesar was one of the greatest losses in human history).

Bur this would of course requite far more compact and reliable forme of digital storage than exiat right now.

Nevertheleas, we better start thinking about it. Those who fear a coning holocaurt (aee p. fi) had best think about puiling some part of mankind through, with aome part of what he used to have.

[^2]
BRYNCHING PRESENTKNONRL SYSTEMS HYPERMEDTA

In recent years a very basic change has occurred in presentational systems of all kinds. under the name branching? and whatnot can bring you different things automatically depending on what you do. Selection of this type is generally called branching. (I have suggested the generic tern hypermedia for presentational medis

A number of branching media exist or are possible.
Branching movies or hyperfilms (see nearby).
Branching texts or hypertexts (see nearby).
Branching audio, music, etc.
Branching slide-shows.
Wish we could get into some of that stuff here.

BRANCHING MOVIES

The idea of branching movies is quite exciting. The possibility of it is another thing entirely.

The only system I know of that worked was at the 1967 Montreal World's Fair (Expo 67). At the Czech Pavilion-- you will recall that before the crackdown they had quite a yeasty culture going in Czechoslovakiathere were some terrific fantic systems going. One was a wall of cubes with slide projectors inside (that rolled toward you and back as they changed their pictures). And then the Movie.

The Czechoslovakian Branching Movie-- I forget its real name-- had the audience vote on what was to happen next at a number of different junctures. What should she do now, what will he do next, etc. And 10 and behold: after they had voted, the lights went down, and that's what would happen next. People agreed that this gave the movie a special inmediacy.

I never saw the movie-- I waited in line several hours but the line was too long to get into the last showing. So instead I went backstage and talked to Radusz Cincera, who worked out the system. It turns out that it didn't work quite the way people supposed. A lot of people thought that "all the possibilities" had been filmed in advance. Actually, there were always only two possibilities, and no matter what the audience had chosen, somehow the film was plotted to come down to the same next choice anyway:

In the actual setup they simply had two proj running side by side, with Film A and Film B, and the projectionist would drop an opaque slide in front of whichever wasn't chosen. But Cincera said that aud iences almost always chose the same alternatives anyway,
so half the movie was hardly ever

In the early sixties a movie was making the rounds in which audiences were supposedly allowed to vote on the ending-- "Mr. Sardonicus," I belleve it was called. From which last reel to his comeupance, to show. Whether the villain was to get his comeuppance, or whatever.

Then there was that Panacolor cartridge projector, mentioned elsewhere, which would have allowed choices by the user

More recently there's the CMX system, also mentioned elsewhere. This is a setup, being jointly marketed by CBs and Memorex, for computer-controlled movie editing stem. Essentially the movie itself is stored frame-byframe (as video) on big disks, made by Memorex; and, und computer control, the output can be switched rapidly among the frames, effectively showing the switched rapidly among knowledge, the video networks haven't yet recognized the possibilities of this.)

The only trouble is, it's extremely expensive (half a million?), it has an exact storage capacity limited by the number of disk tracks (presumably one track per frame) -perhaps five minutes total one one big unit, but you can buy more-- and it can only give its full performance to one viewer at a titue.) (Or to the who/ fult motic, live.)

It may be that the most practical branching movie system would be a cartridge movie viewer and a big stack of cartriages. When you make your choice, change the carthappen automatically that's not as much fun as having it happen automatically

HYPERTEXT

By "hypertext" I mean non-sequential writing.

Ordinary writing is sequential for two reasons. First, it grew out of speech and speech-making, which have to be sequential; and second, because books are not convenient to read except in a sequence.

But the structures of ideas are not sequential. They tie together every whichway. And when we write, we are always trying to tie things together in non-sequential ways (see p.om 42). The footnote is a break from sequence; but it cannot really be extended sequence; but it cannot really be extended
(though some, like Will Cuppy, have toyed with the technique).

I have run into perhaps a dozen people who understood this instantly when I talked more bemused, thinking I'm trying to tell them something technical or pointlessly philosophical. It's not pointless at all: the point is, writers do better if they don't have to write in sequence (but may create multiple structures, branches and alternatives), and readers do better if they don't have to read in seq lence, but may estabiish impressions, jump around, and try different pathways until they find the ones they want to study most closely.

reality is obsolete

The idea that objective reality is perceived by our senses, is an obsolete concept. 01d truisms like "seeing is believing", become much less belyable as we become more aware that, the physical world before we are made conscious of themes of these biological mechanisms share many similarities in principle in application, to other mechanisms observed in the natural environment and those invented for our own use. Since we ar becoming more aware of the nature of perception and those mechanisms involved, now is the time to gain control of our selves and share more discretion in the operation of our own biological machinery. We have entered the age of hyper-reality.

Day-to-day living provides only a limited variety of physical stimulus, and iftle incentive to manipulate the physiological and psychological processing involved. Man's historical preoccupation with the need to maintain constant images of the physical world, is a product of his extreme The current evolving society of leisure orientans this need for constant images and thereby enhances the oppor for a more complete use of the sensory apparatus and thoportunities lated brain functions. Many have turned to drugs or meditation. More specifically it is proposed here, that modern comuican. technology be employed as a "vehicle of departure" fromuncations for constant images, to bring about more complete use of the human technology itself. Hyper-reality is the employment of technology other than the biological machinery when used to affect the performance of the bialogical machinery beyond its owisions. trols are outside your body being part of whatever technolog is interfaced to the body itself. As part of such manology is interfaced to the body itself. As part of such a manmachine interface you could extend your own menta processes, or if you should choose, you could just didy is an opportunity to enhance the various qualities of the human experience. Reality is obsolete.

$$
\not \approx \text { COPYRIGHt } 1973 \text { AUDItaC, LTD. }
$$

!GREBNETTG

Now, in our time, we are turning Gutenberg around. The technology of movable type created certain structures and practices around the writ ten word. Now the technology of computer screen displays make possible almost any structures and practices you can imagine for the written word.

So now what?
For new forms of written communication among people who know each other, jump to "Engelbart" piece, nearby.

To learn about new forms of multidimensional documents for computer screens, jump to "Hypertexts."

Or just feel free to browse.

TYPES OF HYPERTEXT
Let's assume that you have a high-power display-- and storage displays won't do, because you have to see things move in order to understand where they come from and what they mean. (Especially text.) So it has to be a refreshed CRT.

Basic or chunk style hypertext offers choices, either as footnote-markers (like asterisks) or point at then cumes to the screen.

Collateral hypertext means compound annotations or parallel text (see p. bm YZ).

Stretchtext changes continuously. This requires very ur.usual techniques (see p. 9 m 19), , but ex
work.

Ideally, chunk and continuous and collateral hypertext could all be combined (and in turn col laterally linked; see "Thinkertoys," p.DAS2).

A "fresh" or "specific" hypertext-- I don't have a better term at the moment-- would consist of material especially written for some purpose. An anthological hypertext, however, would consist
of materials brought together from all over, like of materials brought
an anthological book.

A grand hypertext, then, foiks, would be a hypertext consisting of "everything" written about a subject, or vaguely relevant to it, tied together by editors (and NOT by "programmers," dammit), in which you may read in $\frac{\text { all }}{\text { can }} \frac{\text { the }}{\text { be alternative }}$ dithen wish $\frac{\text { to }}{\text { for pursue. There }}$ can be alternative pathways for people who think different ways. People who have to have one thing explained to them at a timemany have insisted to me that this is normal, although I contend that it is a pathological condition- may have that; others, learning like true human beings, may gather and sift impressions until the ideas become clear.

And then, of course, you see the real dream.

The real dream is for "everything" to be in the hypertext.

Everything you read, you read from the screen (and can always get back to right away); (and can cross-1ink to whatever you read; see (and can cross-11
Canons, p. Dh 58).

Paper moulders. Microfilm is inconvenient In the best libraries it takes at least minutes to get a particular thing. But as to inking them together-- footnoting Aeschylus to 15 th-century accounts of Indian tribes well, you can only do it on paper by writing something new that ties them together. Isn' that ridiculous? When you could do it all electronically in seconds?

Now that we have all these wonderful devices, it should be the goal of society to put chem in the service of truth and learning. And this is the way I propose. Not through through newly oppressive forms of "compute $\begin{aligned} & \text { not }\end{aligned}$ assisted instruction;" and not through a purported science of "artificalintelligence" that will create new personalisms to irk us All these obstructive oddities, I think, have developed as separate ideals because of the grand preposterosity of Professionalism that has created a world-wide cult of mutual incomprehensibility and disconnected special goals. Now we need to get everybody together again. We want to go back to the roots of our civil ization-- the ability, which we once had, for everybody who could read to be able to read everything. We must once again become a community of common access to a shared heritage.

This was of course what Vannevar Bush said in 1945 (see boxprigh), in an article everybody cites but nobody reads.

The hypertext solution in many ways obviates some of these other approaches, and in addition retains and puts back together the great traditions of literature and scholarship, traditions based on the fact that dividing things up arbitrarily just generally doesn't
work.

EVERYTHING IS DEEPLY INTERTWINGLED

(The only way in which my views differ with those of Engelbart and Pask, I think is in the matter of structure and hierarchy. both men generally assume that whatever natural hierarchy may exist in particular subjects needs to be accentuated; 1 hold that bitrary, and any mit be treated as totally arbitrary, and any hierarchies we find are inter
esting accidents.)

CAN IT BE DONE?
I dunno.
Licklider, one of computerdom's Great Men, estimated in 1965 that to handle all text by computer, and bring it out to screens, would cost no more than what we pay for all text problem of what to do with the people whose ives are built around paper; that can't be taken up here.)

The people who make big computers say that to get the big disk storage to hold great amounts of text, you have to get their biggest computers. Which is a laugh and a half. One IBM-style computer person pompously told me that for large-scale text handling the only appropriate machine was an 1 (BM $360 / 67$ (a sham fully large computer). Such people seem not tential of minicomputer networks-- using, of course, big disks.

There are of course questions of reliability, of "big brother" (see Canons, p.) and so on. But I think these matters can be handled.

The key is that people will pay for it. 1 am sure that if we can bring the cost down to two dollars an hour-- one for the local machine (more than a "terminal"), one for the copyrights)-- there's a big, big market. (And that's what the Xanadu network is about; see p. Div.) My assumption is that the way to do this is not through big business (since all these corporations can see is other corporations); not through government (hypertext is not committee-oriented, but individualistic-and grants can only be gotten through sesquipedalian and obfuscatory pompizzazz); but through the byways of the private enterprise system. I think the same spirit that gave us McDonald's and kandy kolor hot rod accessories may pull us through here. (See Xanadu Network p. $\operatorname{\text {M}} 57$.)

Obviously, putting man's entire heritage into a hypertext is going to take awhile. But it can and should be done.

BIBLIOGRAPHY

Theodor H. Nelson, "The Hypertext." Proc. World Documentation Federation, 1965.

COULDN'T HAVE HYPERTEXT NOVELS, YOU SAY?
Consider the hypertext character of Tristram Shandy, by Sterne. Spoon River Anthology, by Masters.
Hopscotch, by Cortazar.
Pale Fire, by Nabokov.
Remembrance of Things Past, by Proust.
And, surprisingly, hypertext actually fIGURES IN Giles Goat-Boy, by Barth.

GLINDA'S MAGIC BOOK
Glinda the Good, gentle sorceress of the southern quadrant of the land of 0z-- not the flaphead portrayed by Billie Burke in the Goldwynized film-- has a Magic Book in which Everythlng That Happens is written.

The question, of course, is how it's chosen.

You can only watch news tlckers for a short time before getting very bored.

In an important sense there are no "subjecta" at all; there is only all knowledge, since the crossconnections among the myriad topics
of this worid simply cannot bill of this world simply cannot be
divided up neatly. divided up neatly.
Hypertext at last offers the possibility of representing and exploring it all without carving it up deatructively,

Arthur C. Clarke wrote a book entitled The Lost Worlds of 2001 (Signet, 1972) about the variants and al ternatives of that story that did not find their way to the screen.

In a hypertext version, we could look at them all in context, in collateral views, and see the related variants. with annotations

Mortimer J. Adler, the .mall who reduced all of Western Culture to a few Great Books plus an index under his own categories, has now Addled the Encyclopedia Britannica.

Since 1965 he has been creating Britannica 3, the venturesome and innovative new version, now on sale for about half a thou.

Britannica 3 is basically a 3 -level hypertext, made to fit on printed pages by the strictures of Adler's editing (according to Newsweek, some 200 the kind of restrictions he was imposing).

The idea may be basically good, even though
sesquipaedalian titles may impaed the raeder

THE BURNING BUSH

In fact hypertexts were foreseen very clearly in 1945 by Vannevar Bush, Roosevelt's science advisor. When the war was in the bag, things that had become possible by that time.
"As We May Think" (Atlantic Monthly, July, 1945) is most notable for its ciear description of various hypertext techniques-- that is, linkages between documents which may be brought rap (So what if he thought they d be on microfilm.

How characteristic of Professionalism. Bush's article has been taken as the starting point for the field of information Retrieval (see p.), but its actual contents have been ignored by acclamation. Information Retrieval folk have mostly done very different things, yet thought they were in the tradition.

Now people are "rediscovering" the article. If there's another edition of this book I hope I can run it in entirety.

DOVG ENGELSHRT AND "THE AUGMENTATON DF INTELLECT"

Douglas Engelbatt is a saintly man at Stanford Research Institute whose dream has been to make people smarter and bring them together. His system, on which millions of dollars have been spent, is a wonder and a glory.

He began as an engineer of CRTs (see "Lightning in a Bottle," p. DHG); but his driving thought was, quite correctly, that these remarkable objects could be used to expand man's mind and improve each shining hour.

Doug Engelbart's vision has never been restricted to narrow technical issues. From the beginning his concern was not merely to plank people down at display consoles, but in the most profound sense to expand man's mind. "The Augmentation of Human Intellect," he calls it, by which he means making minds work better by giving them better tools to work with.

An obvious example is writing: before people could write things down, men could only learn what they experlenced or were tald by others in person; writing changed all that. Within the computer-screen fraternity, the next step is obvious; screens can double and redouble our intellectual capacities. But this is not obvious to everybody. Engelbart, patiently instructing those outside, came up with a beautiful example. To show what he meant by the Augmentation of Intellect, Engelbart thed a pencil to a brick. Then he actually made someone write with it. The result, which was of course dreadful, Engelbart solemaly put into a published report. Not yet being able to demonstrate the augmentation of intellect, since he had as yet no system to show off, he had masterfully demonstrated the disaugmentation of intellect: what happens if you make man's cools for working out his thoughts worse instead of better. As this poor guy was with his brickified pencil, explained Engelbart, so are we all among our bothersome, inflexible systems of paper.

Starting small, Engelbart programmed up a small version of what most fans call "The Engelbart System" some ten years ago. One version has it that when it came to looking for grants, management thought he acted too kooky, and so assigned a Front Man to make che presentation. But, as the story goes, the man from ARPA (see "Military...", p. 5') pointed at Engelbart and said, "We want to back him."

A small but dedicated group at SRI has built up a system from scratch. First they used 1ittle CDC 1700 minicomputers; then. various grants later, they were able to set up their own PDP-10, in which the system now resides, and from which it reaches out across the country.

Doug calls his system NLS, or "oN-Line System." Basically it is a highly responsive deeply-structured text system, feeding out to display terminals. From a terminal you may read anything you or others have uritten, and wite with as-yet-unmatched flexibility.

The display terminals are all over. The roject has gone national, though at great ex ense: through the ARPA net of computers, you an in principle become a user of NLS for something like $\$ 50,000$ a year.

THE "KNOWLEDGE WORKSHOP"
For a lucky fifty or so people, Engelbart's ystem is Home. Wherever they are-- at Stan ord Research Institute or far away on the ARPAnet-- a whole world of secretarial and communication services is at their fingertips. The user has but to call up through his dis lay terminal and \log on. At that point all is written files, and numerous files shared mong the users, are at his fingertips. H Engelbart's systan has provision for col (Engelbart s system has provision for col-
lateral structuring: see "Thinkertoys," ${ }^{\text {m" }} 52$. He may send messages to others in the Workshop. e may opea certain of his files to other peeple, and read those that have been opened to him.

This all has a certain vagueness if you do not understand how bound you are today by paper-- the problems of finding it, sorting it, looking things up. (If you write, that is, write a lot, you know all too well how intractable is paper, what a damned nuisance. ith a system like Engelbart's, now, whateve is written is instantly there. Whatever you want to look up is instantly there, simultan ously interconnected to everything else hould be connected to source materials, footnotes, comments and 50 on. A document is completed the moment it is written: no human being has to retype it. (It need not be typed on paper at all, if it's Just for the worksho members: a printout is only needed if it has o go to someone outside the system.)

In many ways, Engelbart's system is a prototype for the world of the future, I hope ALL handling of paper is eltminated. Whatever you write, you write on the screens with keyboard and pointer. (No more backs of envelopes, yellow pads, file cards, typewriters.) Whatever you transmit to fellow users of the system you simply 'release'-- no physical papet changes hands.

The group has also worked out some remark ble techniques for collaborative endeavor. Two people- say, one in California and one in New York- can work together through their screens, plus a phone link; it's as if they were side-by-side at a magic table. Each sees on his screen what the other sees; each controls a moving dot (or "cursor") that shows where he's pointing. The effect is somewhere between a lackboard and a desk; both may call up documents, point things out in them, change them, and anything else two people might do when working on something together.

THE SYSTEM itself
Basically the system is a large-scale setup for the storage, bringing forth, viewing and revision of documents and connections among them

The documents are stored (of course) in alphabetical codes. Connections among them, or other relations within them, are signalled by the presence of other codes within them; these are ordinarily not displayed, however, except as directed by a particular display program and display programs can of course vary.

There are varicus programs for display, in large part depending on what sort of screen system the individual user has. (NLS is used with everything from high-resolution line-drawing screens converted to $1000-$ ifne television, down to inexpensive Delta Data terminals- a brand, incidentally, that allows text motion, which most don't) Engelbart's system is extremely general, allowing the creation of files having all kinds of structures, and display programs in all kinds of styles. (I hope that this side of the present book conveys a sense of how many styles that can be.) However, most users are devoted to certaln standardized styles of working that have been well worked out and permit the easy sharing of material and of operating practices. Here, for instance, fis standard screen layour:

Two separate panels of text appear, and links may be shown on them. (Thus it's a thinkertoyseep. .) Two little windows at the top remind you of what you're seelng and what you're asking for. We can't get into the rest of it here

THE COMMAND LANGUAGE
NLS has a command language which all users must learn. While it is a streamlined and straightforward command language, nevertheless it requires the user to type in a specific sequence of alphabetical characters every time he wants something done. (This is acceptable to computeroriented people; I suspect it would not be satisfactory, say, for philosophers and novelists. For designs oriented to such users, see JOT (p.' 50) and Carmody's
System, nearby, Parallel Textface (p? 5) System, nearby, Par
and Th3 (p. M 555).)

Incidentally, NLS users may also employ a cute little keyboard, something like a kalimba, that allows you to type with one hand. You simply type the six significant $\overline{A S C I I}$ bits (see chart p. 28) in one "chord" - it sounds hard but is easy to learn.

Sample commands: I (insert), D (delete), M (move or rearrange). Then you point with the mouse.

MOUSE?

The Engelbart Folks have built a pointing device, for telling the system where you're pointing on the screen, that is considerably faster and hander than a lightpen. (Unfor tunately, I don't belfeve it's commercially available.) It's called The Mouse.

The Engelbart Mouse is a little box with hidden wheels underneath and a cable to the terminal. As you roll $1 t$, the whee 1 turns are signalled to the computer and the computer moves the cursor on the screen. It's fast and accurate, and in fact beats a lightpen hands down in working speed.

Through the command language, NLS allows users to create programs that respond in all sorts of ways; thus the fact that certain texthanding styles are standard (as in above f1lustration of screen layout) results more from tradition than necessity.

The anase apparently is true of the data structure. I veed to be somewhat dinturbed at the way Engelbart' ' text systems seem to
be tigorously hierarchical. This in fact is be rigorously hitrarchical. This in fact 1 is
the case, in the sense that having multiple discrete levels to buils deep into the syatem. But it turns out to be haraless. The stored ext is divided by the atorage tectiniques into multiple levels, corresponding to a Harvard

1. hierarchical fobmat
A. STORACE
B. DISPLAY

But let's expand this example a little:

1. hierarchical pormat
A. Storage
2. Everything in NLS is atored

A2. Their effect depends on dieplay.
B. display
81. The hierarchical codea of

B2. $\frac{\text { parcicular }}{\text { The hif }}$
The can erchical codes for out into a variery merial play arrangements

They can be displayed in outline form
They can be di in normal text form. These dratted numbers can even be made to
disappear.
c. Language disappear.
c1. The
ines thar language deter-
C2. If the hierarchical structure.
C2. What $\frac{\text { th a how can be deter- }}{\text { mined by a program }}$ comand language. in the command language. (For 1 in-
mance, "how many levels dow" it is being shown). C2A. This is four levels down. (The earlier
C3. The display format all depende on what display pro-
grax you use, in the NLS coumand language.
That's enough of chat. I can't help reerructuring, but it to deep in NLS, and if you don't like it either (poor deprived lucky user of iLS) you can program it to disappear,
by the beard of the prophet
Engelbart in German meana Angelbeard; Doug Ingelbart is indeed on the aide of the angels. way for humanity. The sooner the points a new history of the tweatieth ceatury will certesnly hold him high. Few great men are also such alce guys.

bibliogiapty

Douglan C. Engelbart, Richard W. Watson o James
C. Norton, "The Augmented Knowledge Workshop.
Proc NCC. 73, $9-21$.

Charles H. Irby, "Display Techuiques for Inter
active text
$247-255$.
hyparlene we can go instantly in a choice of directiona from a given point.

This of courae can only maen on couputar diaplay acreana
Engoibart's syatem, now, was mainly denignad for paopla who wanted to 1 menerse themselves in it and learn its conventions.
indend, it might be anid to have been designed for a cocomulity of prople in close contact, a sort of syntem of blackboards and collaborative talking papern

A more elemantal ayatem, with a different slant, was put
ther at Brown U. on $1 B M$ equipment. Mo'll rafer to it here cogether at srown U. on TBM equipaent. Mo'11 refer to tit hare as "Carmody's Syatem," after
came firet on the writeup.

Carmody's ayatem runs on an IBM 360 vith 2250 diaplay. mille the 2250 is a fire plece of oquipmont, the quirka of the 360^{\prime} ' oparating system (ree p. 45) often delay the uaer by
making him wait, e.g., for someone olso's cards to got punched before it reaponds to his more immediate uses; this is like making lce-skatere wait for oxcarta.

Anyway, the systam essentialiy imposes no structure on the material; it may consist of text eegment: of any lengen andere in one plece of text signale a posulble jump, but the reader doasn't necenaarily know where tol zapping the asteriok
with the lightpen takes you thera, however.

This in atark and simple. It could also get you good and lost. However, a simple technique took care of that: everyfime the user jumped, the address of his previous location was saved on a stack (see "The Magic of the Stack,
p. 42). The user also had a RETURN button: when he wanted to go back to where he had last jumped from, the system to go bock the where he had last jumped from, the system take him there. (This feature was sdapted frail my 1967 stretchtext paper, and turned out to work out quite wel in practice.)

The system also had handy features for light-pen text editing, and various nice printout techniques. All told, it was a clean and powerful design. While it lacked higherlevel visualization facilities, Iike Engelbart's display of Levels (see "outline" in Engelbart article) or collateral display (see "Thinkertoys," p.Dh 52), it was in some ways suited
for naive users; that is, it was eventually fairly safe to use, for naive users; that is, it was eventually fairly safe to use,
and could in large part be taught to rank beginners in a couple of hours-- provided they didn't have to know about JCL cards.

It is left for the reader to flgure out interesting use you signal to a reader which of several pteces of text a jum you sign
was to?
(at least one real hypertext was actually written on this system. It tied together a lot of patents for multilayer electrodes. Readers agreed that they could learn more from it about gibliography
Steven Carmody, Walter Gross, Theodor H. Nelson, David Rice
and Andrieq van Dam, "A Hypertext Editing System the

GORDON PASK RLTUNNS [stricuric

begur or continues the remarke on Gordom pabk as he will now try to describe Pask's work as he has explained it to me. Perhaps this been mystified or dumfounded by contact with this fabulous man.

Gordon Pask's concern is abstraction and how concepts are formed, whether in a creatur Abstraction is of interest primordially (as life evolved thinking capacity), psychogenetically most peculiarly by Piaget), and epistemological ly (how do we know? Like, how do we know, man?), find out more?).

His interest, then, is in teaching by in a specific subject cess of abstraction that is of so much interest

That he does, then, is propare given
fiels of learning so that they can be studied
by students using abstractive methods, without guidance.

This preparation basically has two step done in collaboration with a "subject matter expert," who names the important topics in the field and states what interconnections
they have. The result is atomplex graph they have. The result is a complex graph
structure (seep. \&6) which Pask calls a conversational domain. it comes out to huge

Then Pask processes this structure ro
more usable map of the field that calls an entailment structure. The processing graph, thus gaking the structure hierarchical the subject-matter-expert has said is the wha structure of the field.
(This processing is carried out by a pro
calded EXTEND.)
The resulting Entailment Structure is then presented to the student as a great map
of the field which he may explore.

Pask intends that the student's explor ations. Will consist of testing analogies, what Pask calls morphisms, to find the exact structures of knowledge he is supposed to be acquiring. This knowledge will be in the
form of isomorphisms, or exact analogies, form of isomorphisms, or exact analogies, i.e.

Pask's overall system, examples of which he has running in his laboriatory in England,
he calls CASTE (Course Assembly System and he calls CASTE (Course Assembly System and
Tutorial Environnent). A further development Tutorial Environient). A further developant (see p. 36 and p. 42) at the Brooklyn Chil
dren's Museum, is called THOUGHT-STICKER. This program is intended to allow the demon stration and testing of analogies directly
by children.

PASK AND HYPERTEXT
Gordon Pask's work is remarkably similar to my own stuff on hypertext

Essentially Pask is reducing a field to an extremely formal structure of relations which may then be studied by the student, at
the student's initiative.

What 1 don't quite understand is how the
alogies are to be explored and tested.)
Anyway, a principal point is that the tive dynamically. the subject is his initia cive dynamicaly; the subject is not artifiquence. Moreover, the arbitrary interconnections of the subject, which are no respecters of the printed page, are recognized as the fundamental structures the student must deal
with and come to understand. On all these points Pask and I are in total agreement.

Indeed, his explorable systems-- (I don't know if they will be what i elsewhere call hypergrams or responding resources)--will be
fascinating, fun and terrifically educational. Because he is.

Now it turns out that this exactly complements the notion of hypertext as 1 have been promulgating it lo these many years Hypertext is non-sequential text. If we
write hapertext on something, it will be
most appropriate if we give it the general interconnective structure of the field. In other words, the interconnective structures
chosen for the textual parts are likely to have the same connective structure (in general) as Pask's Entailment Structure.

For another kind of hypertext, the antho logical hypertext built up of lots of other writings, it is also reasonauser to the same general form as Pask's entailment structure.

In other words, the very same field of knowledge pask is out to represent as an ex sent as an explorable informalized whole, with anecdotes, jokes, cartōons, "enrichment mater ials," and anything elso people might dig

In still other words, let's have both and call it a party.

- BUT IT'S SHOWMANSHIP that's paramount, NOT ANY TECHNICAL SPECIALTY

Ab, Love! could you and I with Him conspis
 To grasp this norry Scheme of Things entire,
 Re-mould it nearer to the Heart's Denire!

èduard Fitsgerald

Almoat everyone seems to agree that Menkind (who?) is on the brink of a revolurion in the vay information
is handled, and that thie revolution is to come from sowe sort of merging of electronic acreen presentation and audio ovisual technology with branching, interactive computer syatems. (The naive think "the" merging is
inevitable, as if "the" werging meant anything clear. Inevitable, as if "the" mer
I ubed to think that too.)

Professional people seem to think this merging will be an intricate wingling of technical specialties, that
our new systema will require vork by all kinds of comittees and consulcants (adding and adjuating) until the Re-sults- either specific productions or overall Systems
are finished. Then ve will have to Learn to Use Them Hore consulting fees.

I think this is a delusion and con-game. I think that when the real media of the future arrive, the amall eat child will know it right away (and perhape firat). That, indeed, should and will be the criterion. When you can't tear a teeny kid aw
we'll have gotten there.

We are approaching a screen apocalypge. The author's basic view in that RESPONSIVE COMPUTER DISPLAY SYSTEMS CAN, SHOULD AND WILL RESTRUCTURE AND LIGHT UP THE HENTAL LIFE OF MANKIND. (For a more convent ional out look, see

I believe computer screens can make people happler, simarter, and better able to cope with the coplous prob-
lems of tomorrow. But only if we do right, right now.
wHY?
The computer's capability for branching among events, controlling exterior devices, controlling aakes possible a new era of media.

Until now, the mechanical properties of exteraal objects deternined what they were to us and how
we used them. But henceforth this is arbitrary.

The recognition of that arbitrariness, and reconsideration among broader and more general alcer-
atives, awalts us. All the previous untits and mechanisms of learning, scholarship, arts, transaction and confirmation, and even self-reminder, were based in various ways upon physical objects- the properties of paper, carbon paper, files, books
and bookshelves. To read from paper you must and bookshelves. To read from paper you must move
the physical object in front of you. Its contents cannot be made to slide, fold, shrink, become trans parent, or get larger.

But all this is now changing, and suddenly. The computer display screen does all these things if destred to the same markings we have previously handled on paper
The computer display screen is going to become universal very fast; this is guaranteed by the suddenly rising cost of paper. And we will use them for everything. This already happens wherever there are responding com-
puter acreen systems. (I have a friend with two CRTs on puter acreen systems. (I have a friend with two CRTs on
his desk; one for the normal flow of work, and one to his desk; one for the normal flow of work, and one to
handie interruptions and side excursions, a lot of hande interruptions a,
foreat will be aaved.

Nou, there are many people who don't like this 1dea, and huff about various apparent disadvantages of che
screen. But we can improve performance until almost screen. But we can improve performance until almost
everyone is satisfied. For those who say the screena a everyone is satisfied. For those who say the screena are
"too swall," we can improve relliability and backup, and "too small," we can improve reliability and backup, and
offer screens everywhere (so that material need not be phyaically carried between them).

The exhilaration and excitement of the coming cime 1a hard to convey on paper. Our acreen displaye will be ity, and will respond to our actions as if allve phyaic-

The question is, then: HOW WILL WE USE THEM? Thus the design of ocreen performances and environments, and of trassaction and traasmiseion systems, is of the high-

TiiE french liave a word for it
In French they use the term 1 informatique to mean, approximately, the presentation of in
formation to people by automatic equipment. Unfortunately the English equivalent,
informatics, has been preempted. There is a
computer programming firm called Informatics computer programming firm called Informatics,
Inc early sixties they said they did not want the name to become a generic term. Trademark law (Others, them in this to ally Feurzeig, want that to be the word regardless.) But in the meantime
i offer up the term fantics, which is more

What paople don't cet is how computer technology now maker poasible the revietion and improvement - the trans-
formation-- of all our media. it "eound too technical.

But thie is the banic misunderatanding: the fundemental iasuen are NOT TECMNICAL. To underatand this is
besically meter of MEDIA CONSCIOUSNESS, not technical basically
knoveledge.

A lot of people have acute media conacioumess. But owe people, like Pat Buchanan and the communarda, suggest indeed, that we live in a world of falae imagea promilgated by "media," a situation to be corrected. But this is
misunderatanding. Many tmagea are false or puffy, all right, but it is incorrect to suppose that there is any Citernative. Medis have evolved from simpler forma, and
convey the background ideas of our time, as well as the convey the background ideas of our time, as vell as the
fads. Media today focus the impressions and ideas that in previous eras vere conveyed by rituals, public gather Ings. decreas, parades, behsvior in public, pummer' troup-
es...but actually every culture ta a vorid of images. chleftain in his polanquin, the shaman with his feathers and rattle, are telling us something abour themselves and bout the continulty of the soclecy and position of the ndividuals in it.

Now the media, with all their quiriks, perform the ame function. And if we do not like the way some things are treated by the media, in part this stems from not ulssion mechanisma, cannot help being personalized by hose who run them. (like everything else.) The probl is to understand how media work, and thus balance our understanding of the things that media wiarepresent.
thoughts about media:

- anything can be said in any medium.

Anyching can be said in any wedium, and Inspization counts much more than 'science'. But the techiqiques which

2. TRANSPOSABILITY

There hat always been, but now is newly, a NTIT a walking sandwich-board, a radio program, a comic book or fumetti, a movie, a slide-show, a casserte for the Audi-Scan or the AVS-10, or even a hypertex see P.gm46).
(But transposing can rarely preserve completely the character or quality of the original.)
3. big and small approaches

What few people realize is that big picturea can be conveyed in more powerful ways than they know. The reason they don't know it is that they gee the content
in the media, and not how the content is being gotten across to them- that in fact they have been given very big pictures indeed, but don't know it. (I take this
point to be the Nickel-Iron Core of Mciuhanism.)

People who want to teach in terms of builiding up Erom the small to the large, and others who (11ke the fillin the gaps, are taking two valid approaches. (We may call these, respectively, the Big Picture approach and the Piecemeal approach.) B18 picturee are Just as memorable as picky-pieces if they have strong
insights at their major intersections. 4. The word-picture continulu

The arts of writing and diagraming are basically a continuum. In both cases the mental images and cognitive structures produced are a merger of that is heard or received. Hords are slow and tricky for presenting
a lot of connections; diagrams do this well. But diagrams give poot feel for things and words do this grama give poor feel for things and words do this
splendidy. The writer presents exact statementa, in an accord-structure of bute and indeeds, molded in structure of connotations having (if the wricer in good) exact impreciseneas. This is hardly startitng: vague words (or the use of precise-aounding words vaguely) is simply a flagrant form of omiseion. In diagrams. too, the choice of what to leave in and out, how to represent overwening conditiont and forces and examplary details, are highly connotative. (Great diagrams
are to be seen in the Scientific American and older are to be seen in the Scientific American and older
tasues of TIME magazine,)

This vord-picture continuum is juat a part of the roader continuum, which I call fantics.

ANOTHER VIEWPOINT
 John B. Macdonald

 PROBLEM3, PERILS, AHD PROMISES OF EOMPJTER GRAFHICS

I mould begin with some definitione which may be
obvious but bear repeating.

1. Engineering ts the appifcation of ectence for
(8) prorit,
2. Computer craphico does not make ponitible enything that was previously impossiv1e: it
can only improve the throughput of an existing
process,
3. A successful application of computer graphics 1s when over a period or rive years the cost
savings from 1 mproved process throushput ex-
ceed the cost of hardware sont tenance and integration into an maisting process
flow.
fantics
By "fantics" 1 mean the art and *ience of getting deas acrons, both emotionally and cognitively. "Precenta-
ion" could be a general word for $1 t$. The charater hat gets across in alvays dusl: both the explicit atruc tures, and feelinge that go with them. These two aspecte, actness and connotation, are an inaeparable whole; what conveyed generally has both. The reader or viever always gets feelings along with information, even then the
creatore of the information think that its "content" is much more reatricted. A besutiful example: ponderous technical" manuals which carry much more connotatively than the author realizes. Such volumee may convey to some readers an (Intended) impresaion of competence, to thers a sense of the authors' obtuseneas and non-inagina-
tion. Explicit declarstive atructures nevertheless have connotative fielda; people receive not only cognitive structures, but impressiona, feelings and senges of things.

Fantica is thus concerned with both the arts of ef-ect-writing, theacer and so on-and the structures and echaniams of thought, including the various tradicions of lass). These are all a fundamentaliy inseparable uhole and cechnically-oriented people tho think that syotems to fiteract with people, or teach, or bring up information, an function on some technical basis- with no cle-ins to human feelings, paychology, or the larger aocial struc
ture- are kidding themselves and/or everyone eliee. Sysems for "teaching by computer," "information rectieval," and so on, have to be governed in their design by larger rinciples than most of these people are willing to deal th: the conveyance of images, fmpressions and ideas. This is what uriters and editors, movie-makers and lecturra, radio announcers and layout people and advertisin oople not to wergtand it for beanc.

In fantica as a whole, then we are concerned with:

1. The art and acience of presentation. Thus it na-
curally includes
2. Techniques of presentation: writing, stage direction, movie making, magazine layout, sound overlay, etc. and of course
3. Media themselves, their analysis and design; and ultimately
4. The design of syatems for presentacion. This ill of course involve computers hereafter, both conceptually and techoically; since it obviously includes, for the uture, branching and fntricately interactive systems en computer display, data structures (and, to an extent, programming languages and techniques) are all a part.

Fantics must also include
5. Psychological effect and fmpact of variou* presenf haiku or musical but not particular formal aestherica as of haiku or musical comes
vant fantics also includes
6. Sociological the-ins- especially aupportive and ysfunctional structures, such as tie-ins with occupational ad why. Most profoundly of all, however, fantica must deal with paychological constructe used to organize thinge:
7. The parts, conceptual threads, unifying concepta ad whatnot that we create to make anpact of the wrid un erstandable. We put them into everything, but standard-

For example, take radio. Given in radio-- the technological fundament-- is merely the continuous transaisaio of sound. Put into it have been the "program," the serlal (sand thus ehe eppisode), the announcer, the theme sons
and the musical bridge-- conventions uhich are useful pre-
sentationally.

The arbitrariness of such mental conatructs should be clear. Their usefulnesa in mental organization perthaps is not.

Let's cake a surprise example, nothing electronic Let

Many "highways" are wholly fictitious- at leatet to egin with. Let's say that a Route 37 is creaced acros: he state: that number is merely aseriea of aigna that long.

However, as time goes by, "Route 37 " takes on a cer a thing. People say "juat take 37 scraight out" (chough it may twiat and turn); groupa like a Route 37

```
37, may apring up.
```

What was originally simply a nominal conatruct, then becomes quite real as people organize thalr livee around

This all aeema arbitrary but necanatry in both highnew electronic, what

Simply thin: till now the ecructures or mow they don' aprymors. Redio, books and novies have anstural inner dynamic of their own, leading to auch constivets. While
this may prove to be so for computer media as well (-as
 Then wian ine inventimg presentational TECbNIQUES IN THE NE meinge into them trantporting or eranspoing particular
 ventions like dialogue instruction ("CaI"), or srbictary restrictions of how itinge may be connected, p
written on the computer may be a greac mistake

The highway-number analogy continues. The older highways had numbers for conventence, and our travela be-
 But now with the Interstates, a highway is a planned, ealed unit, no longer just a collection of roada gather

This unit, the Interstate, is not merely a paychological construct, but a planned atructure. Knowing what worke and that doesn t in che design of hast highuays, the Inter states were buit for speed, scructured been a conacious enigning in the system deaign for well-based reasons, no a chance structure brought in from horse-and busgy days.

Now, the constructs of previous media- writing, filme other arts-- evolved over time, and in many cases may have ound their way computer media are currently evolving under large grants largely granted to professionale who use very large words to promote the idea that their origi nal profesions are latgely applicable--), this sort of natural evolution may not take place. The new constructa f computer media, have a chance to be thought out. We need designs resencachans mosalcs, transformed and augmented views, and the rapid and comprebensible control of these views and windows. He are still just begining to find clever viewing techniques, and have hardly begun to discover highly reaponive forms of viewability and control (cf. collateration in "Thinkertoys," p. Ya 520), and Knowlicon's button-box (Corith Han-Machine Everything," cited p. , and material on controla, belou.)

the mind's unification

One of the remarkable things about the human mind is the way it thes things together. Perceptual unity comes out of nowhere. A bunch of irregular resinential and industrial blocks becomes thought of as "my
neighorhood." a most remarkable case of mental unification is afforded by the visage of our good friend Mickey Mouse. The character is drawn in a nost peradoxical fashion: two globelike prorrusions (representing
the ears) are in different poilitions on the head, depend the ears) are in different positions on the head, depend No one finds this objectionable; few people even notice it seems.
the paradoxical ailatomy of mickey mouse

mickey mouse (frontal)

posstble reconcilitations: Diagonal Mounting

(2aterat)

Rolling
Relative
to Camera

What this shows, of course, is the way the mind can unify into a consistent mental whole even things which are inconsiscent by normal rules (in this case, the rulem

Even perceptions are subject to the same principle of unification. The fingernail is an excrescence with n nerves $101 t$; yet somehow you can feel $\frac{\text { chings }}{\text { fingernatis-- }}$ tying together disparare $\frac{\text { your }}{\text { sensations }}$ into a unified sense of something in the world (say, a coin you're trying to pick up). In the same way, an experienc
ed driver feels the road; in a very real sense, the car's ed driver feels the road; in a very real sense, the car'

This principle of mental unification is what make things come together, both literally and figuratively,
in a fantic field. A viewer bees cwo consecutive movie in a fantic field. A viewer bees two consecutive movie
shots of streets and unifies them into one street; control If you are used to them, become a aingle fused system of one vies on a screen is a part a greater whole, of whic

THE GESTATT, DEAR BRUUUS
IS NOT IN OUR STARS

CONTROLS: THEIR UNIFICATION AND FEEL
Controls are intimately related to screen presenta-
The artful desigo of control systens is a deeply misunderatood area, in no way deconfused by calling it ed, such as text editing operations, views of the universe on a acreen, the heading of a vehicie, the tilt of a alrcraft, the windage and adjustments of artillery. the temperature of a stove burner and any other controlable devices. And nowadays any conceivable devices
 pulation by lightpen on CRT screens (aee p. jun ${ }^{\text {m }}$, flicks
of the finger, the turning of the eyes (as in some exof the finger, the turning of the eyes (as in some ex that Incroduce problemg- see p. DM/3), keyboards, elec tron
on.

The human oind baing an supple as it is, anything having it be comprebene1ble whole.

An elready remarked, our ability mentally to unfify
chinga is extracrdinary. That we somehow tie together chings is extraordinary. That we omehow tle togethex
clutch, gear, accelerator and brake into a comprehensible control atructure to make care go and atop should amare and instruct.

Engineers and "human factors" people apeak as though there were some kind of acientific or determinate vay to
dealgn concrol syatems. Piffle. He choose a set of conterols, wuch like an artiat's Palette, on the bails of general appropriateness; and then try beat and most artistic ally to fit them to what needs doing.

The result must be conceptually clear and retrosctively "obvious"-- imply because clarity is the simplest way ystems are easier to learn, harder to forget, heas likely yatemare easier to learn, harder to forget, leas likely 1-- getting more done for the resources put in.

There ia a sort of paradox here. The kinds of congood system la not. Smoorhneas and clarity can come from disparate elements. It is for this reason that I lay particular atress on my Jor system for the input and reviaion of text, using a palette of keys avallable or the aimples
standard computer terminal, the 33 Teletype. I cannot take the finel judgenent on hou good this system is but it pleases me. JOT is also an important example because t suggests that a conceptually unifled system can be created from the artiful non-obvious combination of loose
elements originally having different intended purposes.

Mental analogy is an important and clear control echnique. He tend to forget that the steering wheel was invented, separately replacing both the boat's tiller and he autonoblle's tiller. We also forget that thed by children. Such continuous analogiea, though, require coran tuportant condition.

Simplicity and clarity have nothing to do with the appearance of controls, but with the clarity and unique
locatability of individual parts. For this reason I find deplorable the arrayed controls that are turning up, e.g. on today's audio equipment. Designers aeem to think rous of thinge are desirable. On the contrary: the be pocket tape recorder

but of course this is now phased out; instead most cassette recorders have five or six stupid buttons in a row. (Was
it too good to last?)

Spurious control elegance comes in many guises. Conder Bruce MoCall s description of the Tap-A-Toe Futurol the fictitious 1934 Bulgemobiles, and allowed you to drive the car with one pedal, rather than three (see box nearby).

Careless and horrible designs are not all fictitious One egregious example also indicates the low level of deign currently going into some responding syscems: computet people have designed "kRT writing systems for newspaper which authors would accidentally kill their stories. I a recent magazine article it was explained that the eventual solution was to change the program so that to kill the story you had to hit the "kill" burton twice. To me this seems like a beautiful example of what happens when you let insulated technical people design the system for gent as installing knives on the dashboard of a car, pointing at the passenger.

There is another poor tendency. When computer prorampers or other technical people design particular systems without thinking more generally, things are not it is be cher simple or combinable whe way re function, controls that are differently used for anothe articular function, making the two functions not com-

What makes for the best control structures, then There is no simple answer. I would say provisionally that it is a matter of unified and $\frac{\text { conspicuous }}{\text { constructs }}$
in the mental view of the domain to
be controlled, corresponding to a weli-distinguished and clearly-interrelated set of controlling mechanisms. But that is hardly the last word on the subject.
the organization of wholeness
It s hould be plain that in responding sereenaystems, "what happens on the screen" and "how the The screen events are part of the way the controls respond. The screen functions and control functions merge psychologically.

Now, there is a trap here. Just as the gas pedal, clutch, gearshift and brake merge paychologily. Clutch and gear shift do not have, for most of us, lear paychological relevance to the problem of controlled forward motion. Yet we paychologically integrate the use of chese mechanisma as a unified means or controling forvard motion (or, like the author, get an Automacic). In much the same way, any syatem psychological organization, even spuriously. the trap Is that ve so easily lose sight of arbitrariness and even stupidity of design, and live ith it when it
could be so much better, because of this paychological
melding. could be
melding.

But useful wholeness can be helped along. Juat as
 namic should confer an well-organized internal dyand clarity that carefully-orgenized writing hea

Thle contribution of wholeneas can only occur, how ever, if the under-level complicationa of a nyem have as they affect the user , conaider the deasign of the Jot
text ediring aystem text edicing yyatem (p . irsp) : while it is aliple the yser, computer people often react to ft with indignation cant features of compucer what are to them the signifioccupation with storage, especially the calling prevision of "blocks." Nevertheless. tails at this level which muat be smoothed back if ve are to make aystema for regular people.

The same applles to the Th3 system (see p. DH 5ζ) which is designed to keep the user clear-minded as he at the computer level must be hidden to make mechanisma fantic space

Pudovkin and Eisenatein, great Russien movia-trakers of the twentiea, talked about "filmic space"- the imagin

This concept extenda itgelf naturally to fantic space, che space and relationahipa sensed by a viever of any medium, or a user in any preaenting or responding envition-
ment. The deaign of computer display syatema, then, ia went. The design of computer display syatems, then, ia
really the artful
crafting of fantic space. Technicalltie graphics is really a branch of movic. Ninak computer fantic structure

The fantic structure of anything, then, consists of its noticeable parts, interconnections, contents and efcts.

I claim that it is the fantic unity- the conceptual and presentational clarity of the ere things-- that makes fantic systems-- presentational systems and materia1clear and helpful, or not

Let us take an interesting example from a system for computer-assisted finstruction now under fmplementation.
I will not 1dentify or comment on the aystem because per haps in do not understand it sufficiently. Anyway, they have an array of student control-buttons that look like

[-b, ective]	Hecp	AOVICE
MAP	harder	EASIER
RULE	$\left[\begin{array}{c} \text { ExAMP } \\ {[\text { [ximple }]} \end{array}\right.$	PRACT [practce]

The general thinking in this syaten seems to be that the student may get an overall organizing view of
what he is supposed to be learning (MAP); information on hat he is currently supposed to be about (OBJ); canned suggestions based on what he's recently done (ADVICE). Mordoer, he can get the system to present a rule abou
the subject or give him practice; and for either of the subject or give him practice; and for either of rules (i.e., more abstruse generalities) or harder prac tice.

For the latter, the student is supposed to hit
BULE or PRACT followed by HELP, HARDER or EASIER, viz.

OBJ	HELP	ADWIE
MAP	HARDER	EASHE
RULE	EXAMP	PRACT

Now regardless of whether this is a vell-thoughtout way to divide up a subject- I'll be interested to see how it works out- these controls do not seem to be wellarranged for conceptual
rowsof-buttons approach.

I have no doubt that the people vorking on this system are certain this is the only possible layout. Sut him, for inatance, if we set it up as follows

or 11ke this:

What I am trying to show here is that merely the arrangement of buttons creates different fantic constructs. If you see this, you will recognize that considering all the other options we have, designing nev media is no amall matter. The contional otructures. merge mentaliy with the presentart-sighted designa having aballow unity is all too great.
fantic design
Fantic design is basically the planning and selection of effectag (We could also csil these "performance velues"--cf. "production valuea" in movies.)

Some of these intended effects are simply the comminication of information or cognitive structure-- "in formation transfer, to use one of the more obtube
phrases current. other deairable effects include orienting the user and often moving him emorionally, including somet fimes overwhelming or entrancing him.

In the design of fantic systems involving automatic esponse, we have a vast choice among types of present understood. Not just screen techniques and functions, but also response techniques and functions.
(If "feelie" syatems are ever perfected, as in Huxley's Brave New World, it's still the same in principle. See Wachapress, p. DMq.)

In boch general areas, though-- within medis, and designing nedia-- it seens to me that the creation of $\frac{\text { organizing constructs }}{\text { In particular, the organizing conseructs must not dit }}$ tract, or tear up contents. An analogy: in writing, the inventions of the paragraph, chapter and footnote were inventions in writing technique that helped clarify that was being expressed. What we need in computer-based chop up, constrain, or interfere with the subject (see box, Procrustes, nearby).

I do not feel these principles are everywhere sufficiently appreciated. For inatance, the built-in structures of Plato (see "Fantic Space of PLato," p.
8m 27) disturbs me somewhat in its arbitrariness-- and the way its control keys are scattered around.

But there is always something artificial-- that is, some form of arrifice- in presentation. So the problem do not cut connections or ties or other relationships you want to save. (For this reason I suggest the reader consider "Stretchcext," p. DMiq, collateral linkage (p. gh 52), and the various hypergrams ($\mathrm{p} \cdot \mathrm{ym} 18-19$).
These structures, while somewhat arbitrary and artificial, nevertheiess can be used to handle a subject cial, never

An fmportant kind of organizing construct is the map or overall orienting diagram. This, 100 , is of ten the diagram may have unclear import but clear and helpful connotation. (For instance, consider the "picture syatema' diagram on P. DM 20 -- just what does the vercical dimension mean? Yes, but what does it really mean?

Responding systems now make it possible for such orienting structures to be multidimensional and respon fing" control illustrated on p. DM 31).

Fantic design, then, is the creation either of things to be shown (writing, movie-making, etc.) at the
lower end, or media to show things in, or environments.

1. The design of things to be shown-whether criting, movie-making, or whatever- is nearly always a combination of some kind of explicit structure-- an ex
plation or planoed lesson, or plor of a novel-- and a feeling that the author can control in varying degrees The two are deeply intertuined, however.

The author (designer, director, etc.) must think carefully about how to give organization to what is being presented. This, too, has both aspects, cognition

At the cognitive end, the author wust concern himself with detailed exposicion or argument, or, in fiction, plot. But simply putting appropriate parts together is not enough: the author must use organizing conetructe to continually orient the reader's (or viewer's) mind. Repeated reference to main concepts, repeated shots (In a movie) of particular locations, serve th1s function; but each medium presents 1ts own possible devices for this

The organization of the feelings of the work crise-croses the cognitive; but we can't get into
selection of pointe and parte contributes to both aspacte. If you are trying to keep the feeling of
thing from being ponderove, you can never include everything you wanted, but must select from among the explicit pointe and feeling-generatora that you have thought of.
2. The deaign of media chemselves, or of media subsystems, is not usually a matter of option. Books for world's fairs or very personal projects, we have a certain option. Which allows things like;

Smellaviston or whatever they called it: aviea witn a smeli-crack, which went out Into the theater through odor generators. Aranching movies (see p.gm44).
wultaneous ollde projections on different screena).
Stereo moviet
And so on. The thing about the ones mentioned is that they are not viable as continuing setups for repeated productions. They do nor for poth on Which in way, of course, too bad.

But the great change is just about now. Current technicalities allow branching media-- especially those associated with computer screens. And it is up to us now to design them.
3. MENTAL ENVIRONMENTS are working places for atruccured activity. The same principles of shownanship apply to a vorking environment as to both the contents of medis which packaged materials are brought, structured environments are basically environments where you use non-packaged material, or create thinga yourself. They might also be called "contentless media." The principles of wholeess in structured environments are the same as for the others, and many of our examples refer to them.

The branching computer acreen, together with the aelfsame computer's ability to turn anything else on and off as selected by the user, and to fetch up inmedia and environment that has never existed before. Media we design for screen-based computer systems are going to catch on widely, so we must be far more attentive to the options that exist in order to commitnationally, perhaps-- to the best.

In tomorrow's systems, properly unified controls can give us new flexibilities. If deeply vell-designed, chese promise magnificent new capabilities. For informance of his work by a computer-based music synthesia system (see "Audio," p.bm1), perhaps controlling the many qualities of the performance on a screen as he goes. by means of such rechniques as dimensional flip (see p. Dn3i). (The tradition of cumulative audio synchesis, as practiced in the fifties by Les Paul and Mary Ford, and raore recently by Walter Carlos and Mike Oldfield, ill techniques become common.)

One of the intents of this book has been to orient you to some of the possibilities and sose of the options considered generally. There is not room, unfortunataly, to diacumen mother one or two overall ponabilitien in plato (diacuased pp. Dil8-19): otherater so far has been
new medih to last
What': worse, we are confronted not merely with the Job of using computers to present specific thingo. The greater task in to design overall coaputer media that a sea of ignorance and confuaion, it is neverthelest our duty to try to create a whole transportation mytem tha everybody can cllmb aboard. Por the long run, fantic pyoteme nust be treated not as customaystema for explicit purposes, but as overall general designs waich will have to tie tocetark and catch on, otherwine collapse and perish.

final consequences

It beems to me certain that ve are moving covar a generalized and universal Pantic aystem; people can but if so, being able to the them together for smoit but if so, being sble to tie them together for smooth
tranmiseion is easential. (Think of what it would be like if there were two kinds of telephones?) This then is a great search and crusade: to put cogether truly general media for future, systems at which we can read The initiatives are not likely co $\frac{\text { after }}{\text { come }} \frac{\text { year }}{\text { from }}$ after year. The initiatives are not likely co come from the more conventional computer people; oome of them are part of gereasive defensiveness from programers, aspecially, "Why would you want that?" The correct anger is because, dammit:)

But this all means that interior computer technicalItfes have to be SUBSERVIENT, and the programers cannot be allowed to dictate how it is to behave on the basis Quite the contrary: from the fullest consideretion of the rite the be nust dictate what lower-level structurea are to be prepared within.

But this means you, dear reader, must develop the fantic imagination. You must learn to visualize possible uses of computer acreans, so you can get on down to the deeper hevel of how we are going to tie these thinge
together. together.

The designer of responding computer aystems is creating unified setups for vieuing and manipulating chinga~- and the feelings, impressions and aense of chings representing the true content and structure of human thought. (Yes, Dream Machines indeed.) But it should be something more: enabling the mind to veigh, pursue synthesize and eva

BIBLIOGRAPHY

Theodor H. Nelson, "A Conceptual Framework for
Man-Machine Everything." Proc. NCC 73 .
"Computopia and Cybercrud." In Levien (ed.),
Computers in Instruction, The Rand Corporation,

JoT: Juggler $\&$ Text

From "A Human Being's Introducion to the JOT System." ©(1472 T. Helson.

Here's hov: simple it is to create and edit text with the JOT system
Since your typewriter is now a Jot machine, not every key does what it used to

CREATING TEXT: just type it in.
Khige: The quick brown fox jumps over the lazy dog.
It hype: The quick brown fox jumps over the lazy dog.

REVIEUING A SENTENCE YOU JUST TYPED: the back-arrow takes you back, the space bar gteps you Kofife: \leftarrow sp sp sp sp
\# Fyres: (bell) The quick brown fox

DELETIONS AND INSERTIONS: the RUBOUT key rejects words you don't want. To ingert, merely type.
Yo. Yype $\leftarrow \quad$ sp $s p$ RUBOUT lithe sp sp sp sp sp sp
If fipes (bcil) The quick/brown/ lithe fox jumps over the lazy dog.

REARRANGING TEXT: first we make three cuts in the text, signalled by free-standing exclamation
Yor Yye sp : sp I sp 1 fox
If then The 1 quick I lithe: fox
TO REARRANGE IT, YOU TYPE: LINE FEED key. This exchanges the two pieces between the cuts. check tie results:

THE WALKING NET ${ }^{\text {(13 }}$

$\rightarrow A$ one-minute systom

that three-year-olds can learn
$[$ Somp to buv to to phy you aritevp,
mated of the rel thing.]
Aaother application of tik present invention is alto in the ure
of pietorial diaphay, but offert a great veriety of potential user ehoieea in a aimple circurstance. I call thio the "maiking net" syeten bucause control is effected through a changing netvoik of choices wich step, or "waik," aroind the corven.

The problen of intricate coaputor gruphic: may be phrased as rollowe: Eiven that a digital ayter can hold u vide variety of craphical esteriale ready to pretent, how way the ueer mont aimpiy and conveniently choose then? Indzed, how may the user keep track or what in bappening, where he 18 and where be has been?

The extermal dechanisil I huve solected for this fucility purudux ically combine: great versatility for eophleticoted presentations vith greut amplicity before the nalve user. The idea is this: the user may comond 1 continuing ruccession or changing presentations, mixing ouly one simple choice at atime, yet receiving intricate and rich animations with extremely clear continulty on the acreen.

Tbe exterior mechanisa is this: along with an arbitrary graphic pretentation on the screen, the user 18 continuously presented with the faige of a forking aet or arrons, e g.:

|The pip is a conventioni hiche-pen cursor. The "current shank" is a 11 re Whose implicit gradations control developreate in the pleture; and the choice of arrows at the end of the current shank cetermins a discrete choice between Alternatives thut are to transpire.

The user, seizing the pip witb the ilghtpen, ,oves it (through the usual 11ghtpen techniques) sidewaye wioac the current ahank. Koving it in the "rorward" aireeticn cauces progresaive developonente in the pictu: s , moving It "beckward" causes a revergal of aniciticms and other previous developrents.
 the user may drag it (through the usisil Ifestipen techniquas) along cithe: of the beckoning alternatives. This tben causes further developentis in the pregentation consonunt with the line selected.
"Develomants" of the picture bere include expansion, contruction, ollding movementa and fram-by-frace anication.
(These materials will have been, of coarse, explicitly input by wuthors and ertists.)

In a somple employment, consider a presentistion on the subject
of Volicanoes. Let the first shank of the control det coatrol the "rise of a volcano froa the sca"-- an unduleting ocean surface plerced first by a wisp of saoke, then a groving peak, with rivulets of lava meen to run down its sides and darken as they contribute to its growth.

At the end of the flirst anharik, the user cay bransh to tuo arrovs,
lubelled rebpectively hORD ORIGIR and Hiricaici. Elther option continued itie presentation vithout a break, retaiming arich or the picture on the ecreen. Selection or worw oricill causes the vord voicato to chenge to vucart, and a picture or the ged valcan is acen to ocize a ilghtaing boit flsing fros the crater; text appanss to explain thio. Alterantively, if the user chooses MrFzilor, the tubea and duets uith1n the volcano appear, and cxplunatory text also.

$\|$ abusi.)
(The puth upchosen fadea from the acreen, an does the previmic

THINKERTOYS

our greatest proniems involve thinking and the visualization of complexity.

By "Thinkertoy" I mean, first of all, a system to help people think. ('Toy' means it should be easy and fun to use.) This is the same general idea for which Engelbart, for instance, uses the term "auqmentation of intellect."

But a Thinkertoy is something quite specific: I define it as a computer display system that helps you envision complex alternatives.

The process of envisioning complex alternatives is by no means the only important form of human thought; but planing, writing, weighing alternate theorles, conaidering alternate forms of legislation, doing echolarly reaearch, and so on. It is also complicated enough that, in solving it, we may solve simpler problems as well.

We will stress here some of the uses of these systems for handling text, partly because I think these are rather interesting, and partly because the complexity and subtlety of this problem has got to be than the tracks left by the mind, and so we are really than the tracks left by the mind, anding ideas, in all their complexity.

Numerous types of complex things have to be intercompared, and their relations inter-comprehended. Here are a few of the many types:

Discrepancies among the testimony of witnesses.

Successive drafts of the same document.

Pairs of things which have some parts the same, some parts different (contracts, holy books statutes of different states, draft versions of legislation...)

Different theories and their ties to particular examples and evidences.

Under examination these different types of intercomparison seem to be rather different. Now, one approach would be to create a different data structure and viewing technique for each different type of complex. There may be reasons for doing that in the future.

For the present, however, it makes sense to try to find the most general possible viewing technique: one that will allow complex intercomparisons of all the

One such technique is what I now call collateration, or the linking of materials into collateral strucforward if you think enough abour is fairly straight bart discovered it independently.

Let us call two structures collateral if there are links between them, connecting a selected part of one with a selected part of the other. The sequences of the connected parts may be different. For simplicity's sake, suppose each one is a shozt piece of writing. (We will also aspume that there is some convenient form of rapid viewing and following between one end of a link and another.)

We might also think of them as systems for
THE MANAGEMENT OF LOOSE ENDS.
we often want to save alternatives.

From Coleridge's Poems: A Facsimile Reproduction of the Proofs Reproduction of the proofs
and MSS. of some of che Poems.
(Folcroft, 1972)

Now, it will be noted first off that this is an extremely general method. By collateral structuring we can easily handle the equivalents, of: tables of contents explication; labeling; headings; footnotes; notes by the writer to himself; comments and questions by the reader for later reference; and additional details out of sequence.

Collateration, then, is the creation of such multiple and viewable links BETWEEN ANY Two DATA STRUCTURES, in principla. It is general and powerful human intellectual great variety of possible uses in able attention from researchers of every stripe.* 4

The problem then, is how to handle this for rapld and convenient viewing and whatever other work the user wants to do-- writing and splicing, interpear on this spread: The parallel Textface ${ }^{\text {tm }}$, designed as a seminal part of the Xanadu system (see p. y 56), which I hope will be marketed with that system in the near future, and a more recent design which I've worked on at the University of Illinois, the 3D Thinkertoy or Th3.
CLARITY AND POWER
We stressed on the other side of the book that computer systems must be clear, simple and easy to use. Where things like business uses of computers are consome of the complications that people have been forced to deal with in ill-designed computer systems verge on to deal with in ill-designed computer systems verge on to think that's the way it has to be. "Your first duty is to keep your job, right?" one computer person said to me recently. "It wouldn't do to set up systems so easy to use that the company wouldn't need you anymore." See "Cybercruc," p.b.)

But if it is desirable that computer systems for simple-minded purposes be easy to use, it is absolutely necessary that computer systems for complicated purposes be simple to use. If you are wrangling over complex al-ternatives-- say, in chess, or in a political simulation game (see "Simulation," p. 58), or in the throes of trying to write a novel, the last thing you will tolerate is for your computer screen to introduce complications of its own. If a system for thinking doesn't make thinking simpler-- allowing you to see farther and more deeply-- it is uselss, to use only the polite term.

But systems can be both powerful and simple at the same time. The myth that things have to be complicated to do anything for you is pernicious rubbish. Well-designed systems can make our mental tasks lighter

It is for this reason that I commend the reader hese two designs of mine: as examplee of user-level you will (see p? Ms-fi) -- that are pruned and tuned to give the user great control over the viewing and cromsconalderation of intricate alternatives, wthout oomdication. I like to believe that both of theie. In eed, are cen-minute systems-- that is, when we get to naive users in ten alnies or len

It is because of my heartfelt belief in this kind Aimplicity that I stress the creation of prefabricaed environments, carefully tuned for easy uie, rather learnt creation of computer languages which must be p.ba 16) and DeFanti (see p.pm 31). Now, their approach abviously has considerable merit for sophisticated users who want to tinker repeatedly with variant approaches. For people who want to work incessantly in an environment, and on other things-. say writers- and are ab-sent-minded and clumsy and nervous and forgetful (like che present with thoroughly falleafe functicated enterly memorable atructural and control interralat hipe, is the only aproach

* In my 1965 paper (see bibliography) I called collateral structures zippered lists.
** A group at Brown University has reportedly worked along these lines since I worked with them, but due ocertain personal animosities I have not kept up ee what kind of response they can get out of the IBM gystems they are using.

BIBLIOGRAPHY

Theodor H. Nelson, A File Structure for the complex the Changing and the Indeterminate." Proc. AcM 65 ,
$84-100$. Unpublished.

DECISION/CRFATIVITY SYSTEMS
[THINKERTOYS]
Theodor H . Nelson
19 July 1970

It has been recomnized from the dawn of computer display that the aid decisions mond important use of the computer displisy should be to and Douglas Engeltart have really shown how ve may use the display to visualize and effect our creative decisions swiftiy and vividiy.

For sone reason, however, the most important aspect of such systems has been neslected. Ye do not make important decisions, we should not make delicste decisions, serially and irreversibly. Rather, the power of the computer display (and its conputing end filing support) must be so crafted that we may develcp elternatives, spin out their complications and interrelationships, and visualize these upon a screen.

No system could do this for us automaticelly. What design and progransing can create, however, is a facility that will allow us to list, sketch, link and annotete the complexities we seek to understand, then present "views" of the complexities in many different forms. Studying these vicus, annotating and refining, we can reach the final designs and decisions with much rore in mind than we could otherwise hold together in the inagination.

Some of the facilities that such systems must have include the following:

Annotations to anything, to any remove.
Alternntives of decision, design, writing, theory.
Unlinked or irrecular dieces, hanging as the user wishes.
Multicoubling, or complex linkage, between alternatives, annotations or whatever.

Historicgl fi.ling of the user's actions, including eech addition and modification, and possitly the viewing actions that preceded them.

Frozen moments and versions, which the user may hold as memorable for his thinking.

Evolutionary counlinf, where the corrcspondences between evolving versions are automatically maintained, and their differences or relations easily annotated.

In addition, desicns for screen "views", the motion, appearance and disappoarance of elcments, require considersble thourht and imagination.

The object is not to burden the user, or make him avare of complexities in which he has no interest. But almost everyone in intellecturl ities in which he has no interest. But almost everyone in intellectu these facilities. If people knew they were possible, they vould demand them. It is time for their creation.

A full-fledged decision/creativity system, embracing both text and graphics, is one of the ultimate design goals of Project XaNaDU.

The Parrulel Textrace ${ }^{\text {sin }}$

This user-1evel system is intended to aid in all forms of writing and scholarship, as well as anywhere else that we need to understand and mani-
pulate complex clusterings of text (i.e., thought) pulate complex clusterings of text (i.e., thought)

The parallel Textface, as described here, furnished the initial impetus for the development of the Xanadutnt system (see p. Duts6). Xanadu wa developed, indeed, originally for the purpose of split apart. It turned out that the parallel Textface required an extremely unusual data strucstructure and program techniques; these then became the Xanadu system. As developed in the final Xanadu design, they turn out to handle some very unusual kinds of screen animation and file retrieval But this grew out of structuring a system to handle the functions described here.

Thus the Parallei Textface basically requires a Xanadu system.

It is hoped that this system can be sold complete (including minicomputer or microprocessor-no connection to a large computer is required) for (Since "business people" are extremely skeptical as to whether anybody would want such a thing, I would be interested in hearing expressions of interest, if any.)

(c) 1972 T. Netcon

As shown here, the screen presents two panels ment of iore are allowed. Each contains a segproper aer ginage" would be an immay be changed instantly.)

The other odds and ends on the screen are hidden keys to fade (in this illustration), just to lessen the
anel boundaries and control graphics may b? made to appear by touching them with the lightpen.

(Cl472. T. Aelson:

ROVING FUNCTIONS
The text moves on the screen! (Essential.) The lower right hand corner of each text panel slight horizontal extension is control diagram. The pip. The user, with his ion is a movable control pip. The user, with his light pen, may move the smoothly upward (forward in the text to move rate proportional to how far you push the pip "down" causes it to move back. (Note that we do not refer here to jerky line-by-line jumps, but to smooth screen motion, which is essential in a high-performance system. If the text does not move, you can't tell where it came from.)

Real person sits at cardboard Xanadu mockup.

Nice keyboard. But what happened to

Two panels are about right for a 10×10 screen.

Independent text pulls dependent text along. painted streaks simulate motion, not icicles.

DERIVATIVE MOTION: when links run sequential ly, connecting one-after-the-other on both sides, directly: the smooth motion in one panel is match ed in. the other. This may be called derivative motion, between independent text (being handled directly with the lightpen) and dependent text (being pulled along). The relationship may be re versed immediately, however, simply by moving the lightpen to the control pip of the other panel, whose contents then become the independent text

Irregularities in the links will cause the independent text to move at varying speeds or jump,

If no links are shown, the dependent text just stops.

Collateral links between materials in the two panels are displayed as movable lines between the panels. (Text omitted in this diagram; panel boundary has been made to appear.)

Some links may not have both their endpoints displayed at once. In this case we show the incomplete link as a broken arrow, pointing in the direction of the link's completion.

The broken arrow serves not merely as a visual pointer, but as a jump-marker leading to the the lighterial. By zapping the broken a materialas shown by the completion of the link to the other panel. (Since there has been a jump in the second panel, we see that in this case the other link has been broken.)

(c) 1472 T.13LSon

When such links lead to different places, both of these destinations may nevertheless be seen at once. This is done by pointing at both broken links in succession; the system then allows both links to be completed, breaking the second panel between the two destinations (as shown by dotted line across

区ANAD

comz rinclion
fall-safe and historical features.
In systems for native users, it is essential
in to safeguard the user from his ovn mistakes. Thus
in text systems, commands given in error must be reversibie. For instance, Carmody's system (se
p. DM47) requires confirmation of deletions.

Another highly desirable feature would allow the user to vien previous versions, to see them col versions, and even go back to the way particular things were and resume work from the previous erslon.

In the pazallel Textface this is all conIn the parallel Textface this is ant com- (Ex-
prised in the same extremely simpe factivery,
tremely simple from the user spoint of view, that treme Insimpie irem is. of course, hairy.)
is.

In an egregious touch of narcissistic humor, We use the very trademark on the screen as a control
device (expanded from the "X" shown in the first panel

Actually the X in "Xanadutm," as it appears on the screen. is an hourglass, with a softly falling trickle of animated dots in the lower half, and
Sands of Time seen as heaps above and below. These have a control, as well as a representative, function.

TO UNDO SOMETHING, YOU MERELY STEP "BACKWARD IN TIME" by dagging the upper part of the hourglass undone. Two pokes, two operations.

You may then continue to view and pake changes as if the last two operations had never taken place however, if you decide that a previously undone edit operation should be kept after all, you may step forward-: stepping onto the previous time

Revision Tree
(D) 1 PI2 T - Necsors
We see this clarified in a master time diagram or Revision Tree which may be summoned to the screen, versions are still "this example we see that three and variations having been abandoned. Ther starts fronds correspond to short-1ived variations, result ing from operations which were then reversed. In other words, "excised" time-lines, to use Gerrold's

The user-- let's say he is a thoughtful writer-may define various versions or Drafts, here marked

(C)H72. r.tieason
differemay, indeed, define collateral linkages between different versions defined at various times in the

(c) 1972 r.sacson
... and sec them displayed collaterally; and revise

Materials may be copied between versions. (Note that in the copying operation of the Parallel Text face, you actually see the moved text moved bodily

getting aroun
The user may have a number of standby layouts with different numbers of panels, and jump among them by stabs of the lightpen.
lmportantly, the panels of $\frac{\text { each }}{} \frac{c a n}{}$ be full,

File Webra

The File Webtill is a map indicating what (labelied) files are present in the system, and which are collaterated.

The File Startm is a quick index into the contents of a file. It expands as long as you hold the lightpen to the dot in the center, with various levels of headings appearing as it expands. Naturally, you may jump to what you point at.

EDITING
Rather than giving the user anything complicat edit controis are comprised in this diagram, the Edit Rosetw. Viz.

Th3:
This design, Th3 (Thinkertay in 3 dimensions), it one I have been work-
ing at thile on the faculty of the Univing at wille on the faculty of the Univ-
ernity of illimois. it is designed specifically for implementacion using DeCificaly for implementation uank De-
Fanti' GRASS language (see p. 9 m 31). and the Vector General 30 display (ace
p. -30). Whether it will ever be nctually p. afo). Whether it will ever be nctually
programed depends, of course, on numerous factors.

It is meant to be a very haghpover thinkertoy, suitable for experimen-
tarion with creative processes, especially cation with creative processes, espectial (There is no room to discuss the larier here.) It is suited cspectally to the visualization of tentacive atructures in amorphous clusters. In some of its features it goes considerably bin (elsewhere in this apread).

Nevertheless, the same design criteria apply: a vell-designed computer environment for any purpose should be learnable in ten
minutes; otherwise the designer has not been minutes; otherwise the designer has not been
doing his job. (I mean it would be learnabie in ten ainutes if you and I had it in front of us, working. This dencription will have to be weird and abstruse, i'meorry to ary.)

This syatem is designed around a threedimensional display screen (the Vector General display, as manipulable by thecrass lanos.

Now, most people do not think of text sa three-dimensional. Laymen think of it as
two-dimensional, since it's usually printed on rectangular pages. Computer people ordinarily think of it as one-dimensional, as a long atring of characters and spaces-essentialiy what you'd get if you printed things in one line on a long, long ribbon hree-dimenaional either; but ilke anything else, it has numerous qualities or disensions, any three of which it's nice to be able to view st once (see "Dimensional Filp,") p. Ansi). And that's essentially the idea: the three dimensions we'11 look at at any
one time will be a particular view of a larger one tim

Now, the basic form of storage will be one of those Nelson-structures that drives computer people batty. Spectically, the
basic data structure will be clusters of points.

Puns sometimes reflect a higher reality. Now it turns out that this structure in fact
reflects a great Folk Truth: uritten discourse does in fact consist of "points" which you ave them rotate as dots upon a screen reflect. this structure.

Writing is, in fact, a projection from the intended "points" to a finished exposition Which embraces them. Now, this is very 1ike the viev of language held in modern linguistics namely, that a finished sentence is a surface
structure" constructed out of basic sentence kernels chewed up by certain transformations. is a surface scructure of "points" which have been embedded and spliced in a structure of transitions, accordance-notes and so forth (see
p. DMY)

The general dida of the Th3 system, then, 10 that the user may view the "points" he Whates to make, variously upon the 3D viewing projections, geometrically, from this interior etructure of points.

Finally, the unifying idea that gives the ystem siemplicity is this: all views will be on

(further technicalities of these 'points': Each point may have a value (numerical pa(which number may itself change). Such values may be null, as distinct from zero, showing that the point has no position on hat particular acale
or more pleces and scraps or written mater 1a1. Such scraps may be just phrases or single words. (Indeed, such scraps may be associated not just with a point, but with aeveral specific values of a point.) Each may aiso contain $\frac{\text { keyuords. }}{\text { Discrece relations }}$ between
also be defined. There may be a variety of rypes of relation, which either exist between two points of don't.)

The crucisl point here ia char it's unifled fox; user every version appeara on a aide of fied two-dimenaional view in which the two dimenfons are "position in overall text" (vertical) and "position on line" (horizontal).

Each side of a box may have a different dew projected of it. seen at once. However, for consistency these must have appropristely common dimensions.

By rotation and zooning the user may focus on the original pieces, and work with them, writing and revising.

Moreover, by uaing conbination of zoom and hardware clipping (as avallable on this a specific range of material on particuiar dimentions.

galaxy and box

There are basically two views of what you are working with: the Galaxy and the Box. ing you to study discrete relations and struc tures in the material; various "dimensions" of the material; alternate versions and drafts to be made from the material; and the complex collateration (see under "Thinkertoys") of different structures.

In what follows we will discuss the screen functions but not the control structures, which have not firmed up particularly.

1. galayy views.

The points are seen as a cloud of dots on the screen. If no view coordinates are supplied the dots uill be randonly positioned.
A. "Star Trek" effect.
fly apart as if he is hurtling through space
B. MacNification. The user may "magnify" the dots, making each show 1 its keywords,
further text, and on up to the full fiece.
c. ROTATION. The 3D structure of the dots in space may be se by the user
D. Any relations that exiat among the Points, insofar as they have been logg ed into the systew, may be displayed
E. The user may sort the points by moving
them with a lightpen.
F. The user may write within the individual pieces and splice them together,
combining lightpen and keyboard operations.
2. box viens

In the Galaxy views, the individual Points simply swarm about with no definable position. "Box Views" allow you to order the points on any dinensions that have meaning to you, in an arbitrary coordinate-space.

The box is more than a mere measurementframe. On request the user may see the points graphically); and on request he may also see projection lines between a bax-face and its corresponding point in the point cluster.

"Magnifying", as before, will create a view of the text: but in the box mode of viewing, the cext appears on the aide of the box. That is, the inner view will project to the outside, ydelding a draft. Naturally, this is the current assembly of your pleces; if certain coordinater
are selected it is even a "rypeset" version.

(Note: Vector General hardware does not allow character rocacion; only keyword and headifin rotation is possible, through software character generation. Thus text pleces on the aide of a
box ahow certain freaky movements if the side box thow certain freaky movements if the side is

* At the 1971 Spring Joint Computer Conference, I think it was, I was heckled by a linguist who accused me of being "unimaginative, ingisting further that writing is merely an extension of speech and thus "merely" the application of further transformationa; and he claimed further that what the user therefore needs ia an input language to specify these transformations. This view, while inter
esting, is wrong. esting, is wrong.
A but/indeed
g, however.
[Appended by the

collateral galnxies and boxes
viewing of collateral structures vorke through the same mechaniam. Calaxies and

COMPLICATED NOTE: The extenaion of these mechanisna to pictorial graphica in two
and three dimensions is straightforvard, and three dimensions is straightforward, may exist) behind these graphics. The satne goes for collateration and annotarion
of multidimenaional cluster materials, of multidimensional cluster materials, e.g. inatance, the viewing, annotation and collateration of sociometric clusterings.)

BOX FISSION. (The Beauty Part.)
For paired views of projections from the same cluster which do not share a comsible: BOX FISSION. Starting with one box containing a galaxy, we pull $\frac{1 t}{}$ apart,
making two boxes and two galaxies whose Pointa are 11nked

Now both boxes can be rotated independently, and any view considered; equivalence11 nkages may now be vieved between any two views. (The eye muat, however, turn tuo

(It is interesting to note lnat the links in
lox Fission are handled automatically, to an Box Fission are handled automatically, to an extent, by the harduare.)
welcohe to the future. huh?
This has summarized the development of some ideas for the viewing and manipulation of complex stuff. I offer this design. insofar as I have been able to present it hefe, as an example of fantic design to it; it corresponds to the traditional structure of no technical system; it arises from no intrinsic or cradicional data structures used for com puter representation of these things

But none of these considerations is to che point. Thif design has a certain stark
logical simplicity; it extends itaelf pleusibly from tes basic outlook (or starting ideas, if you can laolate them) into a tool for truly intricate cross-consideration, without adding unnecessary and hard-to-
remember "technicalities." at leas that's how I think of It .

Obvioualy the aesthetics of it ara important to the designer. Buc a more final criterion of its goodness- its usefulnesemay depend on the

hebla khan.
In Xanadu dld Kubla Khan

 And here were forents urient ni the hild
 Down the green hill athwart a cedara cover t A astage place? : as holy apd enclumated

 Aad sank t f cunuilit Lo liftelem occan Ancentril vores prop hesying par I roum
The shadow of the dome of pleasure The shadow of the dome of pleasure Where was bcarl the ne ningled mieasure
From the founulun and the caven It was a miracele of of rase andevice cavea ${ }^{\text {It }}$ Was a miracle of rare device, A dameel with on dukimer In a vision ouece I saw:
It was an Alyssinian muld,

 T woukd build that dome in aif,
That sunny dome! those caues of to
That suny dome ! boose caves of fice!
Add nill should rery. Becuare! Bemare!
Weares cirle round tim thrice. And cose your eues with thrice dreas, Por he on loung dew hath rell
Add drumk the malk of Paradite
"Is that the river that runs down to the sea?"
James Stewart in "The FBI Story."

fren 7

is Deeply ditertandef.

Xanadu, friend, is my dream.
The name comes from the poem (nearby); Coleridge's little story of the artistic trance (and the Person from Porlock) make it an appropriate name for the Pleasure Dome of the creative writer. The Citizen Kane connotations, and any other connotations you may find in the poem, are side benefits

I have been working on Xanadu, under this and other names, for fourteen years now.

Originally it was going to be a super system for handiing text by computer (see p. 12 and 13). But it grew: as I realized, level by level, how deep the problem was.

And the concept of what it was to be kept changing, as 1 saw more and more clearly that it had to be on a minicomputer for the home. (You can have one in your office too, if you want, but that's not what it's about.)

Now the idea is this:
To give you a screen in your home from which you can see into the world's hypertext libraries.
(The fact that the world doesn't have any hypertext libraries-- yet-- is a minor point.)

To give you a screen system that will offer high-performance computer graphics and text services at a price anyone can afford. To allow you to send and receive written mes sages at the Engelbart level (see p.D/V46). To allow you to explore diagrams (see p. bl11) and P. DM51). To eliminate the absurd distinction between "teacher" and "pupil."

To make you a part of a new electronic literature and art, where you can get all your questions answered and nobody will put you down.

* * *

Originally Xanadu was programmed around the Parallel Textface (see p. bl153). But as the requirements of the Parailel Textface were better and better understood, Xanadu became a more general underlying system for all forms of interactive graphic environments. Its data structure has Virtual Blocklessness and is thus well related to the smooth motions needed by screen users. Thus in its final form, now being debugged, it will support not only the Parallel Textface (see p. D 5), the Walking Net (see p. D450), Stretchtext (see p. DM19), Zoom Maps (see p. DM/9) and so on, but indeed any data structure that needs to combine complex linkages with fast access and rapid changes. Because the data structure is recursively Because the data structure is recursively
extensible, it will permit hypertext (see p. $D M 44$ of any depth and complexity, and the collateral linkage (see p.DM52) of any odiects of contemplation.

Xanadu is under private development and should be available, if the economy holds, in 1976. Regrettably, first prices will not be at the $\$ 3000$ level necessary for the true Home System. Exact equipment for the production version has not been selected. A number of microprocessors (see p. 44) are in serious contention, notably the Lockheed SUE, but there's something to be said for a regular mini. The PDP-11 is of interest (see p. 42); (so especially is its Cal Data lookalike-- unless DEC would like to build us a PDP-IIX with seven modes of indirect display addressing. Are you reading this, Ken Olsen?) And here's a laugh: a company called IBM may in fact make a suitable computer, except that they call it the "3740 Work Station." So for those customers who want IBM equipment, maintenance and prices, with Xanadu software, it's a definite possibility.

So, fans, that about wraps it up. I'11 be interested in hearing from people who want this system; many hardheaded business people have told me nobody will. Prove 'em wrong, America!

Of course, if hyper-media aren't the great est thing since the printing press, this whole project falls flat on its face. But it is hard project falls flat on to conceive that they will not be.
xenadu:
JRASS tiox

 two nioctiownots: for

 of the equivalent. Sorre.

 in iccinematu tilet lexcopt for possibio variation

 conalitions, \& well-knom tochnique in the thela.

 a

:thiocharly

"Weines's the hume, and mant he Proposee Could outdo
A recat report by arthur D. Litetie, A Bot on 4 tre comented on the comstorstrabie worket poetent it it
 cercets are pprowi:

mantwo kernork

of cent vo vill pey tor 10, To buit the kind

the
Prenchiating.

tie plak. is it as cont as it sems?

 in pritirity 15 he wates to pay for 1 t- esd wy
 that car be called. (See colliterell terncturat.

 has.

 with maere it is sored.)

 bble comorctally.)

XAYADOOMES, ${ }^{\text {m }}$

EVEL KNELSON-
WILL ME MAKE IT?

Xanadu:
And the Albatross.
 addr than you think. 1 can't go on furcere. I've got no haidren of my own, ne famly at all. So who is going to rull the factory when I get two old to do it mysel? Sameme's got in kecp it poung-if unly for the sake of the OampaLoompas. Mind you, there are thounands of elever men who would give auything for dee chance to come thand take over fromb me., hut idon't went that sots of person. 1 don't want a prown-up persen at all. A grownup worit lister to me: he wini' leatn. He vill try to du ihings has own way and not muse Sol thave to have a child. I wane a gered sensible loving chuld, new to whom I can tell all my moss precious cand y-making scictess - while I an sull alive."

Roald Dabl, Char14e and tho chocolate Pactary $\frac{\text { p.157. }}{\text {. }}$
so do 1 , my friends, eo do 1 .

How are we going to sell the home
 It's got to offer fun, and it's got to offor truth;
It's got to give you something that 11 iift you from the booth; It's got to be phifting to the hady from Duluth.
You'vo got to have a vision; you've got to have You've got to have a vision; you've got to have an angle;
You should mabe sing jingle (in way that doesn't jangle):
it's got to have a tingle, in a way their minds can't tangle.

So continuing under our glidance inertial,
Let's have the XANADU SIAGGNG Commedint.
[a...y] It's got everything to give,
[6.6or] Realas of mind that you nay roas:
The greatest things you've ever seen
[han fimutut]
Dance your wishes on the screen.
All the things that an has known
Poems; books and pictures too
COMIN: ON THE XANADI

THE.- WORLD.- of.- YOUUUV/

WHAT NELSON
 is really saying

Told so That anybody ch Wilhaot $2=P 4 . D$.

I believe in calling a spade a spade -- not a personalized earthmoving equipment module; and a nulti-dimensional spade,
by gum, a hyperspace.- not a personalized ted dirt access, retrieval and display capability under individulaized control.

I want a world where we can read the world's literature from screens rathe chan personally searching out the physical books. A world wit hoot routine bugger actions occur through formalized ceremonies at consoles. A world white vie can Learn study, create. and share our creations wit tout having privately to schlepp and physically safeguard them. There is a familiar, all-enbrating motto, the jingle ne
all know from the day school lets out, which I tain quite seriously: ".in more pencils: all know from the day school lest out, which I tania quite seriously: ".io more pencils no more books, no more teseher;' dirty looks" The Frantic Age

From "Coaputopia and cybercrud."
(Citation nearby.)

MaNIFESTO

My work is concerned principally with the theory and execution of systems useful to the mind and the creative imagination. This has polemical and practical aspects: 1 claim that the precepts of designing systems that touch people's minds, or versal: making hings lone, are simple and uni versal: making things look good, feel right and that involve both machines and people's minds is art first, technology second, and in no way a de rivative specialty off in some branch of computer science.

However, presentational systems will er thinly involve computers from now on

Since hundreds of such systems are now being built, many of them all wrong. We must of computers. and give them some good examples to emulate (such as Sutherland's Sketchpad, silver's PLATO, and, I hope. some of my own designs).

Further. the popular superstitions about computers must be fought- the myths that they dent of human intent and contemplative involve men

NELSONS CANONS A B. ll o Information Rights

It it essential to state these firmly and publicly, because you are going to see a lot at systems in the near future that purport to be the tant-word cat's-pajama systems to bring you "ell the information you need, anytime,
anywhere." Unless you have thought about you may be snowed by systems which are inherently and deeply limiting. Here are some of the things which I think we will all want (The salesman for the other system will say they are impossible, or "We don't know how to do that yet," the standard putdown. But these things are possible. if we design them
in from the boom up; and there are many different valid approaches which could bring these things into being)

These are rules, derived from common sense and uncommon concern, about what people ens and should have in general screen systems.
systems to read from.

1. EASY AND ARBITRARY FRONT ENDS.

The "front end" of a system-- that is, the program that creates the presentations for and simple for people to use and understand.

THE TEN-MINUTE RULE, Any system which cannot be well taught to a layman in ten minutes. by a tutor in the presence of a sound far too stringent; I think not. Rich and powerful systems may be given front ends which arc nonetheless ridiculously clear: this is a design problem of the foremost importance.

TEXT MUST MOVE, that is. slide on the screen when the user steps forward or backward within the text he is reading. The alternative. to clear the screen and hay out a new present a orienting even with practice. thoroughly di

Many computer people do not yet under stand the necessity of this. The problem is that if the screen is cleared, and something new then appears on it. there is no visual way to tell where the new thing came from: sequence on the screen allows you to understand where you've been and where you're going: a feeling you also get from turning pages of a book. (Some close substitutes may be possible on

On front ends supplied for normal users. there must be no explicit computer languages requiring input control strings, no visible es having clarity and safety, or very clear task oriented keyboards. are among the prime alternatives.

All operations must be fail-sate.
Arbitrary front ends must be attachable: since we are talking about reading from text large data system, the presentational front end must be separable from the data services provided further down in the system. so the user may attach his own front-end system, having his own style of operation and his own private conveniences for roving, editing and other forms of work or play at the screen.
2. Smooth and rapid data access

The system must be built to make possible fast and arbitrary access to a potentially hug least into the billions of colthely large files (a) the system should be contrived to allow you to read forward, back or across links without substantial hesitation. Such access must be implicit, not requiring knowledge of where things are physically stored or what the internal file names may happen to be. File divisions must be invisible to the user in all his roving operation (FREEDOM OF ROVING): boundaries must be must not and the user
3. rich data facilities.

Arbitrary linkages must be possible between portions of text. or text and pictures: annotation of anything must be provided for; collateration (see p. SO) should be o standard facility, between any pair of well-defined ob-
ejecta: PLACEMARK facilities must be allowed to drop anchor at, or in, anything. These features imply private annotations to publiclyaccessible materials as a standard automatic service mode.

The AI people don't understand,
the IR people don't understand,
the CAI people don't understand
and and for God's sake don't tell 1 kM .

I believe that an introduction to any subject can be humorous, occasionally pro-
found, exciting, vivid, and appealing even to experts on their separate levels.
to

Perhaps someday lan prove it.

4. rich data services based on
these structures.
The user must be allowed multiple rover (movable placemarks at points of current activity), making possible, especially, multiple windows to the location of each rover) with displays of

The system should also have provision for high-level mooting (syer-p and the auto-

Then, a complex of certain very necessary and

A ANTHOLOGICAL FREEDOM. the be able to combine easily anything he finds into an "anthology," a movable collection of these linkage information for such anthologies must be separately transportable and passable between
B. STEP-OUT WINDOWING: from a place in such an anthology. the user must be able to step out of the anthology and into the previous just read a quotation, he should be able to have the present anthological context dissolve around the quotation (while it stays on the screen), and the original context reappear around it. The need of this in scholarship should be obvious C. DISANTHOLOGICAL fREEDOM: the user must be able to step out of an anthology in such a way and not return if he chooses. (This has important implications for what must really be happening in the file structure.)

Earlier versions of public documents mus retained, as users will have linked to them However. Where possible, linkages must also be able to survive revisions of one or both objects.
5. "FREEDOM FROM
spying and sabotage.
The assumption must be made at the outset of a wicked and malevolent governmental authority. If such a situation does not develop, a few minimal safeguards built in

FREEDOM FROM BEING MONITORED. The use of pseudonyms and dummy accounts by indviduals, as well as the omission of certain recordkeeping by the system program, are necessary here. File retention under dummy accounts is also required.

Because of the danger of file sabotage, and the private at-home retention by individuals of files that also exist on public systems, it is Which version is authentic. The doctoring of on-line documents, the rewriting of history cf. both Winston Smith's continuous revision the encyclopedia in Nineteen Eighty-Four and "The White House"-- is a constant danger. Thus our systems must have a number of complex provisions for verification of falsification, especoaly the creation of multilevel fiducials (parity systems), and their storage in a variety of places. These fiducials must be localizable and
separate to small parts of files.
7. COPYRIGHT

Copyright must of course be retained, but a universal dexible rule has to be worked out. permitting material to be transmitted and copied a royalty fee, surcharged on top of your other a royalty fee, surcharged on

For any individual section of material such royalty should have a maximum: ie., "by now you've bought it."

Varying royalty rates, however, should be the arbitrary choice of the copyright holder except that royalties should not vary sharply screens, moving between areas of different roy ally cost must be sharply marked
bibliography
Theodore H. Nelson, "Compucopla and Cybercfud."
In Roger Levien (ed.) $\frac{\text { Computers }}{\text { in }}$ Ingeruction (Rand Corporation, 1971).

'Rascal om I? Tile that!"

FIECOUT:

Now you see why 1 brought you here. This Gem-maniacel book has, obviously, been created as a crossroad of several cross pur-
poses: to furnish a needed. grabby layman's introduction to two vast but rather inaccesstble realms: to present a coherent, if contentious. point of view. and unroll a particular sort of apocalyptic vision after preparing the vocabulary for it; to make bright friends and informed supporters for my outlook and projects; to get hom to some of my friends the fact thot what 1 am doing is at bottorn not technicsi; and finally, in the'way things should be, which others will have to answer $\frac{1}{\text { if }}$ they propose to do less. Thus, overall, this book is a message in a Klein bottle, waiting to see who's thirsty.

I suppose it all started in college. Swarthmore left me with an exaggerated notion of the extent to which ideas are valued in the academi worid; it took two graduate schools to clear this up. After thet, as far os I was concerned,
Ph.D. stood for Poophead. But itill cared about ideas. and the deep necessity of finding
their true structure and organization. From their true structure and organization. From writing I knew the grueling difficulty of trying
to make ideas get in order. i believed in the pure, white light of inspiration and the power of pure. White naive but clever mind to figure out anything if not obstructed but dumb dogmas and obtuse mental schemata fostered by the educational system.

When I finally got the idea of what computers were sbout. sometime in 1960, 1 took endless walks at night trying to hash these things out and see where they led. The text systems came clear to me, at least in their beginnings; in a few weeks; the realization that 3D halfone was possible came to me as a shock the following spring, belis then trying to build these systems for creation and the true ordering of intricate thought has been my driving dream

My own life among these dream machines has been a nightmare, thoroughly unpleasant. has been a nightmare, thoroughly unpleasant.
and if people are right in telling me that nobody and if people are right in telling me that not
wants systems like the ones 1 am designing. wants systems like the ones I am designing.
I'll get the heck out of this and be a disk jocke or a toy salesman or something.
first got into this as a writer; all wanted was a decent writing system that would run on a computer. Little did 1 resiaze the immensity of what that entailed, or that for some reason my work and approach would engender indignation and anger wherever 1 went. There is a fietion that everybody in these fields is doing something fundamentally scientific and techrically and enacted mutual playlets. Trying in cut through that and say, "Let's build a to cut through that and say, "Let's build a home for mind," does not seem to generate immediate warmith and welcome.

But I'm glad for the friends l've made in this field, and of course there have been a lot of laughs. (I'd really have hated to miss being in this field, just for the thrilling madness of it all.) All in all my adventures have been a sort of participatory journalism, which t'd like to write up properly some time. Some highlights:

The days of madness in '68, trying to tarl an honest corporation to do all this stuff, hangers-on who were looking for a vehicle to take public. They wanted another chickenfranchise type company, though, and certainly not ideas.

Being briefed by four different corporations, most of them major, on the fantastic powers their interactive-movie system was going to have. One of these briefings was in the board room of a syatems is left-- Kodak's. now, only one of those

Then there was the courtly gentleman who was going to be my Noah Dietrich, my Colonel Parker. He assured me that through his busine connections all was going to go marvelously, and then later intimated that as a special favor he was going to put me in touch with other universes und the tlying saucer people. I just
didn't have time for other univeraes.

Then there was the suppression of my firnt a misunderatanding, at lesst on my part. My boss's understanding wan evidently that the advancement of my idens would be detrimental to his. If it had been a question of free speech in Yugosiavia it might have been different. Well, here $w e$ gio

Then there was the time I was called in as a consultant on a vast federal system, nevar mind what. Numerous computer programs were to be coordinated by a hypertext system they had created and they wanted to know if they'd
deaigned it right. It took months to find out from the programmers exactly what the syat was, so t ended up writing the manual; after which I explained what was wrong with the pro ject and the whole hypertext system was scrapped And my job with it. I never quite got the swing of consulting.

Flying coast-to-coast with the presiden of a large corporation, he and I plamned the whole Xanadu budget for the following year at later reduced in circumstances and Triving years yellow cab in New York, the miserable vehicle breaks down in front of those same corporste headquarters. And the reason 1 had that bad taxi was that I was out of favor with the tax dispatcher, on account of having been absent the previous week-- I had had to fly to California to give a banquet address at the Rand Corporation.

Then there were my adventures with the CIA.

Was sitting in my office at vassar sagely advising a student, when the phone rang and the caller identified himself as John w. Kuipers, head of computer research at the CIA He told me I had been noticed as a new bright young man in the field, and would ! like to
work for them?

Now, there is something about being a cynic and a romantic. (They go together: the with them.) It is not impossible for the cynical romantic to surmise that because everything he has seen personally turned out to be so lousy, that the true hope may lie at the heart of the vortex, just where everybody thinks is impossible. Also the Kennedy aftermath, when sophisticated people had learned to laugh at simple idealism as a facade for the real wheel-and-dealing slap-and-tickle, may have had something to do with it; anyway, I was enchanted. Thus began the Kuipers Caper
yes, there is a mclean, virginia
I was given a handler named Bob, a jolly fellow, who kept assuring me that much money was just around the corner. t was regaled with field who really, undercover Worked for Them. (They weren't doing anything very exciting, i got to show my slides in the CIA office building in Arlington, and to see there very fancy display equipment behind shielded (!) double-doors in a shielded (!) computer room-- shielded to keep any planted bugs from transmitting out the contents of the computers' working registers. I even got to visit the main CIA "campus" in McLean, Virginia, where the sign says Agricultural Research Station. It is an incredible feeling to walk across that big eagle in the terrazzo, and to be given the visitor's badge that says
"United States Government" all in wiggly lines.

They told me that they would be glad to set me up in business as a hypertext company. but I would have to have a corporation, because that was the way they always did things. And so
it came to pass that The Nelson Organization, Inc. was founded at the express request of the United States Central intelligence Agency. I wouldn't have had it any other way. If life can't be pleasant it can at least be surrealistic.
but no santa claus
1 was encouraged to write proposals for them, and write proposals 1 did. (I happened to finish lyping the first one during a lightning storm, page; i falt like Faust. text might have Fruat.) explained how hyper due consideration, I did not say what hypertexts might have done for the Warren Repart Numerous jolly phone calls assured me that my first $\$ 25.000$ was just around the corper.

The break came when Bob called me and asked me to rewrite proposal one more time He had circulated it, he said, among various people "at the shop," who he reminded me were holders of advanced degrees, and it had been less: "Every place yound my proposal meaning could just ss well you 'gaby 'hypertext' you you'll have to clear that up a little "

That did it. They couldn't read elther ho the heart of the C1A , the inne of computer stuf nest of vipers, but the same old poopy Ph.Da. decided to resuscitate my virtue.

As far as 1 know. there is atill not a Decent Writing System anywhere in the world. athough several thinga now come close. It to ruatle around in piles of paper, like squirrele looking for acorns, in search of the phrsses and ideas they themselves have the phrase The decent wrting system, as is see it, wiu ctually be much more: It will help us creste better things in a fraction of the time but eleo keep track of everything in better and more subtle ways than we ever could before. But nobody sees this-- I suppose it's only writers and edtors that know they're trying to
"keep track of ideas"-- and 1 have been unable "keep track of ideas"-- and 1 have been unable to get this across to anybody. (The professio

So here 1 am after fourteen years with exactly two systems to show for it: the main one. xanadu. the text-and-animated-picture network syatem, and Fantasm (1 shouldn't have spent the time but it was a labor of love). The simu have either of them to show, it's all just flowcharts, but it turns out that if t work on either of them with university equipment, my work of fourteen years gets confiscated. So much for that: the outside expedients for debugging continue.

And, to lighten the burden, I've finally given up on trying to reach professionals, who make the obvious palatable: with this bookity I am taking toy case to The People. It is there, anyway, out in Consumerdom, that the real action is going to oceur. So the important thing is for everybody to know what's really possible, and what they could have. That is why I have shot off my big canons (and this epistol).

To me, you see, this is really a holy crusade, wherens I know guys to whom it's just a living. it's no less than a question
of freedom in our time. The cases of Solzhenitsy and Ellsberg remind us that freedorn is still at whe it should be anywhere, Comput display and storage bang us whole new display and storage can bring us a whole new ald and the new; but there are many who would not necessarily want to see this come about Deep and widespread computer systems would be tempting to two dangerous parties, "organized crime" and the Executive branch of the Federal government (assuming there is still a difference between the two). If we are to have the freedoms of information we deserve as a free people, the saieguards have to be built in at the bottom, now.
And the opulence which is possible must be made And the opulence which is possible must be made clear to everyone before we settle on an inferior system-- as we did with television.

Some people have called my ideas and systems "Orwellian." This is annoying in two systems "Orwellian." This is annoying in two
ways. In the first place it suggests the nightware of Orwell's book Nineteen Eighty-Four. mare of orwells book Nineteen $\frac{\text { Elghty-Four. }}{\text { whe }}$. (But hey. do you remember what that world of 1984 was actually like? The eryptic wars against unseen enemies that kept shifting? The governmen apying? The use of language to twist and course we'll have 1984 in America. Only we'll call it 1972.")

The second reason the term "Orwellian" is offensive is that it somehow reduces the "ife of Orwell, the man, to the world of "1984." This is a shallow and shabby thing to do to a
man who spent his life unmasking oppressiveness man who spent his life unmasking

In the larger sense, then-- in homage to that simple, honest, angry man, who cared about nothing more than human fock could be called proud inde
Orwellian.

That reminds me. Nowhere in the book have I defined the phrase "computer lib." By Computer Lib I mean simply: making people freer through computers. That's all.

Fantically-- or fanatically Yours for a better world,
Before we have to settle for Any--

The hole earth chtalog

"I have adream.

READ IT HND WEEP

 brady T'one everybody exrything THEY NEEN" EF ONLY FOLKS STOPPED A FIGHSIN, AN A GRABBIN THEY D gee-hze THET This shmoo Th' EARTH bow plestro
meviryious

One of the morla's most exclusive clubs
is aleo one of tis moot dimmal. If the club al Rome, tounded by uasian businesaman Auretio Peccet, having (as of 1972) some seventy mem-
bery from twenty-five countries.

Their concern they call The Predicoment of Mankind. or the "problematique." It is the
problem of growth. pollution. population. and problem of growth, pollution.
What's Happening in general. On funds from Volkawagen, they have
aponvored studies whleh thinking men con onty
regard as the moat dismal in portent of anything regard as the most dismal in po
we've seen in years. Or ever.

Besically the prediction is that mankind han perhaps forty or nify years left.

Not because of war, or bombs, or dirty movies, or Divine retribution, but tor simple
peonomic reasons. However. the studies are aconomic reasons. However. the stuaties are
often called "computer studies,
, bectuase compu ters are the viewing mechanism by whleh we have come to see these coming eventi.
malthus again
In the nineteenth century. a pessimistic economiat named Thomas Malthus predicted that
there would always be starving people, because people increased scometrically expanding at compound interest, with a fixed rate of ingrease
creating an ever-steeper grow th-- while agriculcreating an ever-steeper growth-- while agricul-
ural production, which must feed wis all, expand arithmetically, not as a rate but a few acres or improvements at a ume.

This meant. Malthus thought, that there would always be the atarving poor. For various
reasons this did not happen in Europe. But the regretable soundness of the general principle
peraiats: when rates of food production can't early keep up with rates of population growth

This is basically the prediction.
dykamic modfllung
Banically what has happened is this. One ay Porrester, of MIT, has for some years bee breed of simulation which couldn't have been done without compulera. And now dynamic
models of the world's entire economic system modelk of the world's entire
can be created and tried out.

Dasically dynamic models are mathematical

 complexes where things change at rales thatcriange themselves over time. For instance, the change themselves over time. For instance, the
more you eat. the fatter you get, and the fatter more you eat. the fatter you get, and the fatter
you get. the hungrier you are going to be. Now, you get. the hungrier you are going to be. Now,
just because this is simple to say in words, and sounde as though mathematicians woutd have had oived the whole clans of problems centuries ago. that's not how it is. The intricacy of such models. even for just a few veriablea, made it impossible to foresee what happens in such com-
plexes exact by techniques of computer enactment plexes exact by techniques of computer enactment.
Forreater. who has studied such systems since the fifties, has become alert to their problems and surprises. The culminstion of his work has been a model of the entire world's economlc
growth. agricutture, population, Industrialization worla Dynamics (wright-Allen, 1971

The insidious portents of Forre ter's work did not gor unnoticed. The
dancers of population increasing at con pound interept on a planete of unchaning
ine, and further derivatives of these changes, suggested that things might be
heeting worse than anybody thưht. An
alert Italian businessman brought toget ra group of scholars fromallo over the
arid to study these prollems, and called

Basically what they have done is
very elaborate computer simulation, mory eliaborate coaputer simulation,
nothe the the ents to come economy of the plane rates. They have taken into account
population, food-growing capaciy, indus
trai grouth, pollution, and a lot of
other things. The aodel is precise and laborate.

Cise Unfortunately the findings are pre They tried all kinds of alternative happen if the birth rates were doulf derent?
what if there were no pollution? What What if there were no pollution? what
if resources were infinite? The resules of the simulations are According to all the simulations,
the husan race wint bee wiped out mostly
or completoly-- by the year 2100 . Let's go briefly through the model,
Note that it cant be exact, and we can't
know what years thing and Note that it can't be exact, and we can
know what years things are going to hap-
pen. The curves theaselves. the shape
of inings to cose-. tell tho seory all of things to cono-- tellit tho story all
too clealy. For those who would 1 ike
alitile more drami with thoir numbers,
fining
 Hunt?
The model assumes that birth rates
stary relatively constant in particular
parts of the worid. and that nax land ond sigricultural techniques increase food
production in relatively well-understood
ways.
so of course, population continues to

Clviluzator, and the puik of mankino. have about forty years to live, sceording to
certain studies (see p. 58 \%. The studies are depresaingly good, although unfiniahed.

There are four posatble thinge to do.

1. Ignore It .
2. Deny it.
3. Seek inclividual antvation momehow
in a remote corner. Lay in stores.
4. The glorious flameout. Eat, drink and be merry. Jor tomornow we die, Of
apocalyptic occultiam, or whotever. 5. Work startng now. In whatever
倍 tribute to a way out.

tine \longrightarrow
Now for the good news. Food pro-
duction also tends to increase:

Noo for the bad ones, thi funing takes in sudadion
does population.

It is not any individual prediction that is rightening, since the numbers plugged into the separate runs are merely hypotheses. To show
the shape of the consequences. It is the overall the shape of the consequences. It is the overal
set of runs that is so ghastly, becsuse they always come out the same.
ay close attention
Now. it is important to clarify what is happening here and what is not. What is not
happening: an oraculsr pronouncement by "the computer," showing some transcendental predic tion by superhuman intelligence. What is happening: people sre trying out separate possible assumptions to see what their consequences are,
enacted by the computer according to the economic rules they set up. Result: always the game Any set af rules, played out in the unslable
exploding-population world beyond the seventies appears to have similarly dire results

What hope is there?

The original model is only an approxima-
and the basic results. as published in The Limits to Growth (see box) reflect those approximations. One of the things that can be done is
to till in and expand the thodel more. to see whether any hopes cun be fourd in the details and tine cracks which don't appasy from the gross results. And, of course, to study and re-atudy the basic findirgs. (For inatance, a small error was recenty fourd: a decimal poin
was misplaced in the "pollution" calculation. leading to an overstatement of the pollution in come of the runs. (But pollution, remember, Is
only part of the problem,)

So there you are. Thia is a atudy of the greatest importance. We may, Juat may, be get-
ting wind of thinge in time to change the outcome (If only we knew how. But again, this atudy
ts where serious diarussion muat besin.)

"'On the shouldery of the information
". bulty for convincing the public that we have the toole. If th has the will, to ed-
drast the complex syatems management drablems of the future;' Bransoomb ald.
"More than any oither profenition
ommunity can rentore the public'a our community can rentore the publicis
confidence that from the timited resources
of the world can be tehtioned elife of well-managed abundance fur all. 'the of
concluded.

EUDGAME.
Now begins the winter of the world
We are polmoning everything.
With to lithe time left. we are of course expanding and accelerating every form of pollution and deatruction

We are killing the last of our beautiful brothers, the whalea, fust to provide mergina amortizstion of the whal
to be scrapped anyway.

Item: supposediy the Sahara Desert was man-made. it is growing fast.

Set down upon this besutiful planet, a
en spot of the universe, we are turning it garden spot of the uni
into a poisoned pigsty

You and I may starve to dealh. dear resder In some year fairly soon now, around the turn of the century, there will no longer be
noubh food for the teeming bulions.

That, anywsy, is what the predictions say The predictions are compelling, not because a
computer made them -- anybody can make a com puter predict anything-- but because the premises from which the predictions grow were
very well thought out.

It is now up to us to moke the predictions
out wrong.
Not by killing the bearer of had tidings. or by pretending they were not clearly statedin the few moments of real choice we may yet

To haggle now about ideology is like arguing about who is driving while we are heade to the noor. The public thinks, "science will save us,"
a view at which many scientists snicker bitterly
Perhaps we will be shrunk to en inch's height, Perhaps we will be shrunk to an inch's height,
or fed on rocks, or given gills and super-kidnes or ted on rocks, or given gills and super-kidneys
to tive in the ever-mere-poisoned see. Or perhaps we will do what science says others have done: die out.

This science-will-save-us ostrich-position is nicely exemplified by Albert Rosenfeld. Science
Editor of Saturday Review $/$ world Since "science" has given us the Boeing
747 and the neutrino, neither of which could
once, he thinks, have been imagined possible. once, he thinks, have been imagited possible,
obviously (to hinu) science can do anything else obviously (to hind) scienec can do anything else
we think is impossible! He fully imagines that we think is impossible! he filly imagines care of geometrically fricreasing numbers of people. In perpetuity?
"Take a lexson from the neutrino." he
"We can solve our problems." ("Look says. "We cen solve our probiems.
to the Neutrino. Thou Doomsayer," Salurday Review/World. Feb 23 1974. 47.)
ather fun
The growing diffusion of weapons and grudges, and the great vulnerability of almos ceverything, assure that terrorism and politic
extortion will will increase dramatically for the foreseeable future. On the other hand whole economic mlocs and industries have lately mastired and demonstrated by example
how to hold the couniry at bay in order to get tj eir wishes; as everybody can see what huppentilig, and learn from it, the number of

All these were issendatly foreasen by in his masterly 1960 work. $\frac{\text { The }}{\text { Strutegy }}$ of Conflict Schelling formalizes communicating adersaries. this is a structural
ruther than paychological study, examining ruther than s paychological study, examining
the properties of situations whether or not they the properties of situations whether or nor
are psychoiogically perceived. Regrethebly. perception of situations is improving all the
time.)

Coubteau says the oceunt sre dying .- and givea mankind fifty years ater life onds there.

Hut even ir everything elge were all right, the Breeder Reastors are aure to gel ut. I rele
to those wonder machines that the electric companies are calling Clean Energy for tho Future. What is not explained with such slogans is that
breeder reactera not only create enerigy, iney breeder reactera not only creste eneriv. They
croate atcmic wable, breeding new fissionable meterial-- including plutunium. Plutonium is
well named tor the ged of hell. Chenically
pecieon and radioctively polioon and radionetively shorror. It doet not
go eway. wherever we put it. it will get buck

[^3]But the breeder reactora multiply this output. Perhaps we could survive the the waste fut the other part of it is the fissioneble materit which can be mude into backyard bombs.

That's the kicker. With more and more terrorists who want to bulld thetr saliabillty reases. Ralph Lapp pointed out last year that the atuff was shipped in unguarded trucks, end one or two good hijockingey would enable any the year 2000 it is not inconceivable that bootle tome weapons will be as wideapread is handruns in Detroit-- and es much used.

But now. With the breeder regactors-- ir of atomic pienty- is here. The amaller countries who want them are getting their alomic weapons -- though holding back asaembly of the parts. arong bomb-wotehers, for instance, that India and larael have theirs anytime they want Ind

Add this to the great avalanche of misaijes, all and horny in their silos, resty to wo on two.
iater three or four, siden. (The v.s. offcial ater three or four, sides. (The U.S. otheial
arsenal now stands st the explosive equivatent of 5 billion tens of TNT. a ton of TNT for ever human being. And that's just the explosive part. not the fallaut: a fraction of these bombs could
destroy all life on eart by is seething residue, destroy all life on earth by its seething residue.) And now. besause of the SALT talks. We may
expect a new and draatic increase of this Readine expect is new and drastic increase of this Resdinest
posture. Hoo toy. What is them 1 say.
so there it is. toiks, merry tumes ahead. Humanity may end with a bang (thermonuclear all poisoned or sterile). or a whimper (universal ombination of the two. and all within the spastic sible) lifetime of the average reader. This is. at any rate, what i think most tikely.

Except of ccurse we won't see it happen hat way. We'll watch the starvations on TV what next ... India?), and tsk about the poor foreigners who can't take cere of themselves. And as the problems increase and move toward ous heartiand, in'll be blamed on environnientalist

Or maybe not. Just maybe

But we've all got to get access to the club of Home moddls, and look for holes or strategies ork are made wiley enough avallabe. perhaps ill pres ane wat that the ortera havebyis hit on.

We've got to think hard about everytring

bibliography

rederick Pohl and C.M. Kornbluth. The Space Aerchants. Ballantine, paper
Thomss C. Sehelling, The Strategy of Connict. Paper.
The $\frac{G_{\text {rept }}}{\text { handy). Paperbeck. }} \frac{\text { merican }}{\text { Bomb }}$ Machine (citation not
book called Cold Dawn (eitution not handy originally published in the New Yarker)
presents a most discouraging view of presents a most disccuraging vew talka

Onc Access Catalog. not to be named here. gives a recipe for an atoricic bomb. Very, funns.
ha the. "The U-235 we ore using. (although lutonium will work just as well) is o radianctive substance and deserver some
carr lit handling. it is NOT redioactive carr it handling. It is NOT redhoaetive don't sleep with it or anything." And wo on Thanks a lot, tellas
Relph Lapy had a plece in the Now York Times
Magazing last year, pointing our that Magazing last year, pointing out that and jt 's only a matter of tiji. belore purks get their handy on it

A piece in a recent Esquire. "Did There Ever
Come a Point in Time When There Were Porty-Three Different Theories about Wetergate? Yea, to the Best of Our Recollestion." Is a very help tul general cource. eapecianly for those who suapect
connection between "Walergate" and the assassinatione of the kennecys. Malcolm x . Martin Luther King. ele. But for a real chill see "Mae Brusellls Conapit
Newsletter" in the March (i) 1974 Newsietter" in the Morch (") 1974
Reenilat. as well as "Who to Orgnnized
Crime and Why Are They Saying Such Crime and Why Are They Saying Suc.
Awful Things About It," same infue.

Gien A. Love and Rhode as Lave. Eculogical Crisis:
S4 (papper).

For a duziling, comantle and optimistic vlew of thez fulure, see Dimenatops of Changt by
Don Fsbun (Giencoe Prete. is in papar).
The Futuriat magazine goes out to membert of lor The Study of Alternative Futurse,
 Wenhington. DC 20014 . The magazine
wed to be protty enppy and optimiatic. used to be protty enppy and optimiatic.
but seamb to be acquising wophistication.

$\cdot M E-B O O T S^{\circ} \times$

Would you believe that the greatest avail－ able computer service is for the kiddies？

For four bucks and a half，an outfit called Me－Books will send，to a child you designate， a story of which he is the hero，in which his friends and siblings appear，and whose action Involves his address and birthday．

Kids adore it．Children who don＇t like reading treasure the volumes；children who do reading reasure the volums much．

I can personally report，at least on the basis of the one 1 ordered（My Friendly Giraffe） hat the story is beauthully In other，worms， far from being a fast－buck scheme，this thing has been done right．It＇s a splendid children＇s has been done right． ory．and wome addrese are related to those of the protagonist．）

Moreover，it has three－color illustrations is on extra－heavy paper and is bound in hard covers．
（In case you＇re interested，any of the three programming languages expounded earlier in the book would be suitable for creating a in the book would be suitable for creating a
Me－Book：depending on the language chosen the holes left for the child＇s own name would be alphabetic variables，segment gaps or null array －anyhow，you could do it．）

Astute readers of the Me－Book will note that while it＇s not readily obvious，only the lines on which personalized information appear have others have all been pre－printed on a press． Indeed，the personalizations appear on only an ide of each page，the whole book being on side of web of paper that＇s run through the line－ printer just once before being cut and bound． But it＇s so cleverly written and laid out that the story moves on beautifully even on the pages that don＇t mention the child＇s name．

As an experiment，the author tried sending or a copy of My Friendly Giraffe as told about a little boy named Tricky Dick Nixon，residing at 1600 Pennsylvanis Avenue in Washington，D．C． The result was extremely gratifying，and well worth the $\$ 4.50$ ．Herewith some excerpts．

Boor shipped to grown－ue
once upon stiac，in a place called
Tashington，there lived a littie boy
naned Tricky Dick Nixon．
How，Tricky Dick wasn＇t just an ordinary lit：le boy－ e had adentures that other little boys and girls just dreas of．

This is the story of one of his aiventures． rt＇s the story of the day that rricky dick met a gireffe．

As the giraffe caue cluser and closer， Tricky Dick started to wonder how in the world he was going to look him in the eye．

Tricky Dick kaex ticte vere uo jaizles in Washington．Especialiy od pennsyltania ave． But Tricky fict wasn＇t even a little bit vorried． Pirgt，because he was a very brave listle boy． And second，pecaust he krew that his friena，the giraffe，youia never take hiz anyplace bad．

Tricxy Dick Nixou ves hove．
Back in inashington．
Back on Penasylvaaia ave．
And uith a story to tell tis friends，that
they voulin＇t have believed if they hain＇t seen
Tricky flick ridiag of f on the giraffe＇s pack．
Tricky Dick woulic long be a bero to those who hit seef his that day．
There would be any other exciting adventures for Tricky Dick and his friends．

And maybe，just maybe，if you＇re a very good boy，soaeday we＇ll tell you aboat those，too．

PERSONALIZED ME－BOOKS＇～NOW AVAILABLE：

OMr Friendly Giraffe Your chuld and the childs Iriends and pels take a fungle trip with a triendly giralle Personalized in over 70 places OMy Birthday Land Adventure People in the land of candy and cake lell all about your chiods exact burthday from buthstone to lamous bifindays	

CMy
 Jungle Holiday

e child or your chonce and ithe cliratle vist ine animals in
an amusement park Personal zed inrougnoul

OMy
Special Christmas
As Santas hetper．your child visist the Santas ol the difforent couniries and learns the
meaning ol Christmas

For additionat Me．Books ${ }^{3}$ written around a child ol your choice contplete an order lorm al your lavorite bookstore or write Me Books Pubitishing Co．Dept M82． 11633 victory Biva，Norin Hollywood Call 91609 Enciose $\$ 395$ Dus
$50 c$ lor pnstage and handing（Calt residents add $20 t$ for sales lax）Be sury to slate which M_{θ}－Book＂you desire and include ine toilowing iniormation persomaluzco stone daia

About those fismy aumbers on your checks．

You will note that all bank checks now have funny－looking numbers along their bottoms． They go like this：

0123456？67
The numbers are odd but recognizable The last four thingies are punctuation marks grammer wants them to mean anything the pro－ rankly，wants them on other words， functions．）

The name of these numbers is
MIGR
which stands for Magnetic Ink Character Recor ding．They are printed in magnetic ink－not netic tape，but chock full of iron and vitaming－ so that as its blobs whiz past special head，they cause a specific sequence of pulse in the parallel circuits of the read head that can be decoded as the specific number or mark

The MICR system was designed in the Iate fifties，with the technology convenient at that time．and would certainly not be designed hat way now．Nevertheless，these weird－lookin symbols have inspired various
hiDICULIUS TYPE－faces，
which apparently look to the public like the latest hotcha whizbang zippity up－to－date futur istic stuff，even though to the knowledgeable person they bring back the late fifties．（In fact there are no letters in the MICR character－ set．）

What．then（you may ask）would symbols designed for computers look like if they had been designed more recently？

We were just getting to that．In fact． there are two such alphabets，called ocR（for Optical Character Recognition）．They have been standardized so everybody can design equipment and／or programs to work with them They are called the A and B optical fonts，or． for completeness， $\operatorname{OCR}(A)$ and $\operatorname{OCR}(B)$ ．

They are very disappointing．
$\operatorname{OCR}(A)$ is a little sexier．At least it looks like something．（Evidently it＇s slightly easier to deal with and design for．）But the other one，OCR（B），just looks like the alphabe next door Here they are

ABCDEFGHIJKLM
NOPQRSTUVUXYZ
$\operatorname{OCR}(A)$
0123456759
$\because: i=+/ 5 \times n 9$

ONAOOEAEF

1234567890

 ABCDEFGHIJKLM NOPQRSTUVWXYZ
abcdefghijklm
nopqrstuvwxyz
＊＋ー＝ノ．ノ：＂＇
？！（）＜＞［］\％\＃\＆のヘ

THE ERS

The national phone company (usually called affectionately. "Ma Bell") has drastically changed its switching methods in the last few years. They are replacing the old electromech snical switches, or "crossbars." with a new device called the ESS, or Electronic Switching hear about it in their jolly news sheet that you ret with the bill.

In the old crossbar days, a phone consection was a phone connection and that was that. Now, with the ESS, all sorts of new combinations are possible: the ESS has stored programs that determine its operation. If you program to take care of that. It does all sorts of things by special program, and new program an be created for special purposes. Now the phone company is trying to find the services that people will pay for. Having calls rerouted temporarily to other numbers? Linking up several people in a conference call? Storing your most-called numbers, so you can reach them with a single or double digit?

These particular services are now being offered experimentally.

The way it works is this: there are a number of programs stored in a core memory; he only "output device" of the system consist of close

Depending on the numbers that have been dialled, and whatnot, the ESS jumps to a specific program, and that tells it to connect an incoming call to particular other circuits, or to ring other lines, or whatever.

It's really neat.
There are only a couple of things to worry about.

One is that it makes wiretapping, not a complex bother involving clipped wires and men hunched over in cramped spaces, but a simple program

Another is that some people think that blue-boxers (see nearby) may be able to program it, from the comfort of their own homes. Meaning that not just court-authorized wiretaps, bu Joe Schmoe wiretaps, would be possible. Let's trope not.

TELAUTOGRAPH

This has been around for decades, and has nothing to do with computers, but ien't it nice?

You write with a pen attached by rods to a transmitter; somewhere else, a pen attached by rods to a receiver duplicates what you have written.

What is being transmitted consists of the measured sideways motion ("change in x "), the measured up-and-down motion ("change in y "), and the condition of the pen ("up" or "down"). What would these days be called "three analog channels, multiplexed on a single line."

These only cost a couple of hundred dollars Why has nobody been using them for computer input?

Sugar Creek, Texas will have 3000 homes with a minicomputer-based alarm system. Evidently various automatic sensors around each house sniff for fires and burglars, as well as providing panic buttons for medical emergencies.

The system uses dual Novas (one a backup). and prints out the news to fire and police dispatcher on a good old 33ASR Teletype. (Digital Design. May 73, 16.)

ONE OF THOSE MYTHS
"Overpay your phone bill by one cent. If drives the computer crazy."

Nope. The amount of payment gets punched in and goes through the gears quite normally

If you want to put together your own computer-on-a-chip, or any other complex integrated circuit, a complete simulation verification-layout-and-fabrication service is available from Motorola, Semiconductor Products Div., P.O. Box 20924, Phoenix, Arizona. Presumably it costs a mint, but after that you can roll out your circuits like cookies.

Your circuit is overlaid on their beehive-chip of logical subcircuits, called a Polycell. You use their MAGIC language (Motorola Automatically Generated Integrated Circuits), which hen feeds a resulting circuit data structure to a program called simul8 (yuk yuk) to try out the circuit without building it. That way you can supposedly be sure before they make the final masks.

I always figured that the day of Computer Hobbism would arrive when the folks at Heathkit offered a build-it-yourself computer. But you know what they came out with instead last year? A general interface for hooking things to the PDP-8.

It was a truly stellar group that reported to Judge Sirica on 15 J an 1974 that the 18 -minute Watergate tape buzz had at least five starts and stops.

The six panelists included:

Richard Bolt, a founder of
Bolt, Beranek and Newman, Inc. kin Cooper, head of Haskins Laboratories, (sep-) Has Stockham, audio resynthesize extraordinary (see p.jn 11)

The news, however, generally referred to them as "technicians."

Quadratong

swell video game now in bars, probably controls the four-player pingpong on the screen with a minicomputer or microprocessor.
Especially exciting is the social possibility of horizontal screens for other fun interpersonal stuff. As well as collaborative work. (But boy, let's hope the radiation shielding is good.)

The Computer Diet by Vincent Antonettl (Evans Pub.) hows the author sitting on the deskplate of a 360 console.

The inside consists principally of charts he reconads for weight loss. "The power of a modern digital computer" interpolated the tables. A slide rule might have have been simpler.

The thing is. he presents a paper on the thermodynamics of weight loss which may be important; in this he dynamics the difference equations which are the heart of his diet. And these may indeed be perfectly valid. So why no call it what it is, The Thermodynamic Diet?

Kirk Brained, of L.A., is using comp rs for a registry of people with something to teach. He hopes that if people are mutually a vailable to each other at a deep enough level. people can begin to act out of altruism in general

There are various computerized astrology services. Given your date of birth, snd hour if known, they'll type out your signs. explanations, etc. Presumably there is a text netwo Which the system selects among according to "reinforcing tendencies ," etc., among the entities thought to be influential.

Conceivably this could do nine-tenths of what a talented human astrologer does, and with the same validity, whatever that may be. In any case it's probably a lot cheaper.

Is it too soon for a omputer pornography contest? (IE it too late?) See p. 8M35.

sUPER-CUSTOMIZNTION

People think computers are rigid and invariant. This (as stated elsewhere in this book) is due to the systems which people have imposed

The fact is that computers are now being set up to give new flexibility to manufacturing processes, Computers, directly connected to milling machines, grind metal into any conceivable shape
much faster than a human craftsman. To much faster than a human craftsman. To in a fraction of a second. Fabric design has been done on computer screens; the obvious next step is to have the computer control the loom or knitting achine and immediately produce what

Custom clothing: soon we may look forward to tailoring services that store your measurements and can custom-tailor a suit for you to any new fashion, in minutes. (But will the price beat Hong Kong?) Customized printed matter is Wherever people want individual varia tions of a basic manufacturing process, computers can do it.

The Telephone Company (at least in illinois and indians) offers a speaker on "The Shadowy World of Electronic Snooping" to interested groups.

in recuraive relations and reverte Polish culture. phone must.
Contact box RS-232 (a see p. gn 3)

BETCHA DIDN'T KNOW...
that the IRS hatn't been able to do inatant matching of W-2 forme to tax returns. That'll fixad in fiacal '74, and intereat and dividend peymente in '75. (TIME, 31 Dec 73, 17.)

"Computer election PREDICTIONS"

This is an outrageous mianomer. The computer is only carrying out, most speedily, what hardened politocoes have always done: factional analysis, now possible with new round pre
returns.

This is based on the cynical, and fatrly reliable, view that people vote according to what faction of the greater populace they belong to-- middle-class white liberals, blue-collar non-union members, and so on. The factions change slowly over time, and people move among them, but the fact of factionalism remains unchanged.

Well. By the close of a major election campaign, most factions can be pretty well predicted, especially that faction will go for what $\frac{\text { proportion }}{\text { candidate }}$ of that faction will go for

But some factions' reactions are not cer tain up to the day of the ballot.

So. "Computer predictions" of elections basically break the country into its factional divisions, state by state and district by district and then tabulate who can be predicted to vote for whom on a factional basis.

Then what's the suspense?
The suspense comes from the uncertain factions-- groups whose final reactions aren't known as the election starts

Certain election districts are known to be chock full of the types of people whose reaction isn't known.

The final "computer prediction" simply consists of checking out how those districts voted, concluding how those factions are going in the present election, and extending this proportion through the rest of the country.

It's often painfully accurate-- but, thank god, not always. When it isn't don't blame "the computer." Thank human cantankerosity

THE VW CHECKOUT COUPLER

may or may not be a real computer-- friends have told me it isn't-- but it's certainly a good idea.

When you pull your late-model Volkswagen into a desler's service area, the guys can just roll out a cable and plug it into the correspon ding socket in your vehicle. At the other end of the cable is some sort of device which tests a series of special circuits throughout the car that things are working properly-- lights, plug points, brakes and so on

This is the same technique used by NASA up to the final moment of COMMIT LAUNCH-system of circuits monitors the conditions of whatever can be monitored, to make sure all's functioning well. It's more expensive to wire it up that way, but it makes checking out the rocket-- or the car-- that much easier

SIC transit
Some of the zappier new Urban Transit Systems give you a ticket with a magnetic stripe on the back. Each time you ride you must push the card into an Entrance Machine. Which presumeticket rus out and you have to pay more money runs out money

Secrecy of the recording code is an impor tant aspect of the thing. Indeed, waggish goasip chagnetic that some such systems start with a blank the card can be wanhed clean with a magnet by larcenous commuters. But this aeems unilikely

YOUR AUTOMOBILE COMPUTER

> Didja know, huh, we're going to have computers in our cars? We refer here to two
anti-skid controllers. which are really just special circuits-- you know, "analog computers"- to compensate that this is apparently more sensitive and reliable then even your good drivers who enjoy controlling skids. Already advertised for some imports
grand bus electronics (see p. 42). Since the electrical part of the automobile is getting so blamed complicated, the Detroit lronmongers have decided to switch to a grand bus structure instead of having all those switches and things separate anymore. Should make the whole thing far easier to service and customize

Presumably this will all be under the control of a microprocessor. (See p.44.) This means that the Weather Startup Sequence-that starts the car turns on the heater, monitors the engine and cabin temperature, and bleats the cabin temperature, twice, politely when it's an ready-- all at a time preset by the dashboard clock

Presumably Detroit is not yet planning to go this far. But because of the auto industry's anomaiously huge influence in America, some have expressed the fear that this move - toward the integrated-circuit. digitally-controlled grand bus-would effectively put Detroit in control of the entire electronics industry.

The ever-clever Japanese are computerizin faster, better and more deeply than we are.

They now have a prototype taxi operating under computer control. They're calling it, at least for export, Computer-controlled Vehicle System (CVS).

Basically it's like an Elevated Railway--

 you climb up and wait-- but when you get in. you punch a button for your destination. According to Hideyuki Hayashi of the Ministry of Industry and international Trade, the system will be operational in Tokyo within the decade, and is the "cleanest, safest, quickest transport system ever devised by man." Think fast, Detroit(A nice point: one of the most important features of such a system is that the vehicles don't react to each other, as do vehicles in the exiating Human-controned Vehicle system (nvs) A whole line of the cars can be accelerated or hexibility and satety. Nothing an possibery ne long.)
(Leo Clancy. "Now-- Computer-Controlled Driverless Cars." National Enquirer 3 Mar 74, 24-5.)
those things on the rallroad cars
As we lean on the fence a-chawin' an -watchin' the trains go by, we note strang Scoteh-Lite all begrimed by travel.

Besteally it's a atack of horizontal stripe in red, blue and other colors. This is ACI for Automatic Car Identification. It may yet atraighten out the railroads

in this neolithic industry, it is not known at any given time where a railroad company's cars are, and some peculiar etiquette governs industry. Yet the obvious solution may come about: a running inventory of where all the cars about: a running inventory of where each one is going, what's in it. and who that belongs to. But, of course, that's atill in the works. Revolutionary ldeas take time

THINGS YOU MAY RUN INTO

Everywhere you go computers lurk. Yet they wear so many faces it's impossible to figure what's going on.

Guidelines are hard to lay down here, but if you look for examples of things you've already run into in this book, it may help some.

Terminals you can presumably recognize.
Microprocessors are harder, because you don't see them. Good rule-of-thumb: any device which acts with complexity or apparent discretion presumably incorporates a terminal, minicomputer or microprocessor.

Two other things to watch for: transaction

 systems and data base systems.A transaction system is any system that takes note of, and perhaps requires verification of, transactions. Example: the new point-of-sale systems (POS). This is what's about to replace the cash register.

In the supermarket of the future, every package will have a bar code on a sticker, or printed on the wrapper. Instead of the checkout clerk looking at the label and punching the amount of the sale into the cash register-- an error-prone and cheat-prone technique which requires considerable training-- your New Umproved Checkout Clerk will wave a wand over the bar code. The bar code will be sensed by the wand, and transmitted to a control computer, which will ring it up by amount and category (for tax purposes), and even keep track of inventory, noting each object as it is removed from stock.

Here is what your bar code will look like. (A circular code, which was already turning up on some TV dinners, has been eliminated by the bar code. This is unfortunate, since the scanier necessary to read the bar code is electronitaly more complicated, but there we are.)

(Incidentally, while this does arrest the classic cashier's cheat-- ringing up excessive purchases on the customers, then having a confederate walk through equivalent amounts- the consumer is still entirely prone to cheating by the store in the computer program. Remember, it's 1974. So you still may have to check your tapes, folks.)

Data base systems are any systems which keep track of a whole lot of stuff, often with complex pointer techniques (see "Data Structures," p. 26). A cute example is the message service all over the country. You may leave messages for your friends or loved may leave messages lo r your friends or loved ones on the road; they can stop at any Stuckey's and ask for their messages, just as if it was a telephone answering
service. (You're listed by your phone number-is this to avoid pranks? And what nomerner is this to avoid pranks? And what about people with no phones?) It's free and a neat idea. of a big central messages are stored on the disk of a big central computer, and queried from
terminals at the individual stands.)

Now, most of the big systems you run into tend to be combination of transaction and data-base system. For instance, suppose you make an airline reservation. The airline has a large data base to keep track of: the inventory of all those armchairs it's Hying around the plans to and the list of who so far have announced plans to ait in them, and in some cases what they intend to eat. When you buy your ticket, that transaction then gets you put in the listing.
Same for car rentals and oo on.

The potential dangers of transaction systems are fairly obvious from the supermarket example, but they fan out in greater complexity as the systems get more complex. Credit cards, for instance, were only made possible by computers and computerized credit verification; but it is only now, fifteen or so years into the credit-card era, that laws protect the cardholder against unlimited liability if he loges it.

Yet we plunge ahead, and it is obvious why Transaction systems managed in, and by, computters allow more flexible and (in principle) reliable operations. For instance, in the secucities business, thousands of stock certificates are lost and mislaid, and the transaction paper must be typed, shuffled, put in envelopes, sent opened, shuffled again compared... all by hand Little wonder they're working on an Automated Stock Exchange System. But if it's taken fifteen years to get the implicit bugs out of credit end ar get the mplich bugs out or credit card ugh wall street "inefficiency" is actually the mischised caret inefficiency is actually disguised marauding of Organized Crime. h-oh. (If they can buy the best lawyers, they can probably buy the best programmers.)

Then there is the Checkless Society. This is a catchphrase for an oft-advocated system that allows you to transfer money instantly by compter; supposedly some such thing is working already in France. Again, they better get it pretty safe before a sane man will go up in it.

The safety of such systems is of course a matter of immense general concern. IBM portentiously (sic) announced its intent to spend millions of dollars on "computer security" a few years ago. However, a few million dollars is not going to plug the security holes in the IBM 360 , and evidently the 370 is just about as vulnerable.
(In this light, even the greatest IBM-haters will have to admit that there may be a proper motive behind IBM's current refusal to let others use its new operating system language: that way they may be able to prevent special holes in the system from becoming known to programmers.)

It is interesting that one profession seems to be stepping forward to try to improve this situation: the auditing profession, devoted to verification of financial situations of companies, seems to be branching into the verification of computer programs and the performance of comflex systems. This will be great, if it works. Cynics, however, may note that auditors have permitted some remarkable practices in the "creative" accounting of recent years. (Obviouslay the way to check out the safety of big systems is to offer bounty to those who can break its security. But who is willing to subject a system to a test like that?

Hereabouts are a few other computerish things you may run into which more or less defy categorization.

THE COMPUTER GRAVEYARD
In the mid-sixties there was a junkyard in Kingston, N.Y. that was like an automobile graveyard-- except piled high with dead computters.

They were from various manufacturers. The guys would smash them with sledgehammers, or other awful things, to make sure they could never work again. Then you could buy the circuit cards. I saw 1401 s five high. Univac circuit cards. I saw 1401 s five high. Univac ironic nut's paradise. You could decorate your den with huge old control panels, mag disks den with huge old control panels, mag disks forbade pictures.

HOW BANKAMERICJRD CHECKS YOUR CREDIT (mice: Dorian.)

"COMPUTER DANG"

should of course be called MATCHUP DATING, since there is nothing particularly computerish about either the process or its intended result But there we go again: word-magic, the imply(See "Cybercrud," p. 8) word Computer. (See "Cybercrud," p. 8 .)

In the early sixties, a perky young fella at the Harvard B-School, I believe, one Jeff Tart, came up with the notion of a computerized dating service. The result was Operation Match, an immense financial success, which sort of came and went. No followup studies were ever done or success statistics gathered, unfortunately, but they certainly had their fun.

The basic principle of "computer dating" is perfectly straightforward. Applicants send in descriptions of themselves and the prospective dates they would like to meet. The computer program simply does automatically the sorts of hing you would do if you did this by hand: it attempts to find the "best', match betweeen what everybody wants and what's on hand

Obviously this could be a matter for serious operations research: attempting to discover the best matchup techniques among things that never really fit together, detail for detail; trying to find out, by followup questionnaires what trait-matchings seemed to produce the best result. etc. But such serious matchup-function research remains, so far as I know, to be even begun.

Obviously there are several problems. Demographically it is almost never true that 'for every man there's a woman"-- in every ge-bracket there's almost always an imbalance the opposite sex in the corresponding eligible age-bracket, either too many or too few. But more than that, there is little likelihood that he traits women want are adequately representted among the available males, or vice versa. For introduction services it's obviously worse: there is no balance likely between what comes in one door and what comes in the other. The service can only do its best with the available pool of people- and make believe it's somehow made ideal by the use of the computer. It's like an employment office: applicants don't match openings.

Numerous other dating services have appared, some of which don't even pretend to use the computer (and others which clam but none that's gotten the attention of the origincl Project Match

But there's no question who got the best dates out of that one. Jeff Tor.

DO YOU GOT RHYTHM?
A device called the BIO-COMPUTER (trade mark) purportedly helps you predict your "body beats." telling you what days are the right sort of time to do particular things in terms of your own biological energies. The object costs $\$ 15$ postpaid from BIO-COMPUTER. Dept. CLB/DM (why not?), 964 Third Ave.. NY NY 10022.

The question with all such special purpose devices-- "fishing computers." horseracing computers, etc., is always whether the theory and formula a which are built into them are correct. There is no ready way to tell.

One possibility, nice and expensive, is to rent a number of mailing lists from a single mailing-list house, with them guaranteeing that they'll compare all the lists you choose and not send to any person more than once.

But as you may be suspecting, this costs money. All this screening and intercomparing requires computer time, and so, even though you are getting a more and more perfect mailing. you are paying more and more and more money for it. So you can see why reasonable businessmen are willing to send out ads even when they know some recipients will get several duplicates.

Another interesting point. There are mailing lists for all kinds of different possible customers. The possibilities are endless. Minority-group doctors. People interested in both stamp collecting and fowers (you'd have to get a company with both lists, and have them go through them for the duplicates... you get the idea).

Note that mailing lists are priced according to their desirability. Weeded mailing lists, featuring only Live Ones, people who've ordered big in recent times, are more expensive. Lists of doctors, who buy a lot, are more expensive than lists of social workers. And so on.

Then there's the matter of the pitch.
The ad's phrasing may be built around the mailing plan. Some circulars come right out and tell the recipient he's going to get several copies because he's such a wonderful person.

THEN there are those advertisements that are actually printed by the computer, or at least certain lines are filled in with the recipient's name and possibly some snazzy phrases to make him think it's a personal letter. Who responds to such things I don't know. My favorite was the one-- I wish I could find it to include here -- that went something like

> You'll really look swell, Mr. Nelson walking down Main Street of New York in your sharp-looking new slacks...

I don't know whether I enjoyed the spaces or the Main Street more

But you see how this works. There's this batch-processing program, see, and the names and addresses are on one lang tape, and the tape goes through, and the program takes one record (a name and address). and decides whether to call the addressee "Mr.." "Ms." or whatever, and then plugs his name into the printout lines that give it That Personal Touch; and then the mailing envelope or sticker is printed; and the tape moves on to the next record.

We may look forward to increasing encroachments on our time and trust by the direct mail industry: especially in better and better quack letters that look as though they've really been personally typed to you by a real human being. (It is apparently legal for letters to be signed by a fictitious person within a company.) In the future we may expect such letters to be sent on fine paper, typed individually on good typewriters, and convincingly phrased to make us think a real personal pitch is being tendered.

There is, however, final solution.
you Can get off all mailing lists that is, the ones "participating" in the Association-- by writing to

Direct Mail Advertising Association Public Relations Department 230 Park Avenue New York, NY 10017

They will send a blenk. If you fill it in they'll process it and delete your name from mailing lists of all participating companies.

Presumably this won't help with X-rated or stamp-collecting lists, but it ought to keep you from getting semiannual gift catalogs from places like The House of Go-Go Creative, Inc. and those million solicitations from Consumer Reports and that File Box company.

Dear Reader:
If the list upon which I found your name is any indica-
 cubseription letter you-teceive. Quite frankly, your education and income set you apart from the gencral popul ion make you a highly-rated prospect for everything from magazines 10 mutual funds.

You've undoubtedly "heard everything" by now in the way fromises and premiums. I won't try to top any of them.

If you subscribe to you won't get rich quick. won't bowl over friends and businaer ...
clever remant-...

You call up the bank and ask your balance and they say. "I'm afraid 1 can't get that information. You see, it's on a computer."
(See Basic Rejoinder, nearby.)
Well, the reason it's this way is that they're handling things in Batch (see p. 45) and they aren't storing your account on disk, or if they are they don't have a terminal they can query it with.

But to say that they can't get the information because it's on a computer is a typical use of the computer as an excuse (see Cybercrud, p. 8): and second, if the person believes this to be an explanation, it's a sign of the intimidation and obfuscation that have been sown umong the clerks who don't understend computers.

DMMN THAT COMPUER!

Everybody blames the computer.
People are encouraged to blame the computer. The employees of a firm, by
telling outside people that it's the computer's fault, are encouraging public apathy through private deceit. The pre tense is that this thing, the computer, is rigid and inhuman (see "The Myth of the Computer," p. q) and makes all kinds of stupid mistakes.

Computers rarely make mistakes. If the computing hardware makes a hardware error in a billion operations, it may be noticed and a repairman called. course, once in a billion operations is once in a thousand seconds, or perhaps every ten minutes. That ought to be mentioned.) Anyhow, innocent gadgetry is not what forces you to make stupid multiple choices on bureaucratic forms; mere equipment isn't what loses your subscription records;
IT'S
THE
SYSTEM.
By system we mean the whole setup: the computer, the accessories that have been chosen for it, its plan of operation or complaints handled.

Don't blame the computer.
Blame the system; blame the programmer; blame the procedures; best of all, blame the company. Let them know you will take your business to wherever they have human beings. Same for governmental agencies: write your congressman. And so on.

ABre Romer

 tip of our tongues:WHY THE HELL NOT? YOU'RE THE ONES WITH THE COMPUTERS, NOT ME!

Let's froth up a little citizen indignation here.

ACOONT NUMEERS

in principle we no longer need account numbers.

Now that text processing facilities are available in most (if not all) major, computer languages, the only excuse for not using these features is the programmer's notion of his own convenience-- not that of the outside customer or victim.

Example. Someone 1 know got brand new ards. He made and no oredit cards. He made no note of their numbers. Then he lost them both. Duly he reported the losses.
Neither service could look him up, they said. without the numbers. Not having used them, he had no bills to check. Even though he was the only person at that address with anything like that name. And why not, pray tell? Either because they were fibbing, or because they had not seen fit to create a simple straightforward program for the purpose. (See Basic Rejoinder, nearby.)

I have heard of similar cases involving major life insurance companies. Don't lose the numbers. Let's all dance to it:

When anything is issued to you,
Write the number down.

"computers"
 that don't answer

Few of us can help feeling outrage at the book clubs, or subseription offices, or billing departments, that don't reply to our letters. Or reply inappropriately, with a form printout that doesn't match the problem.

First let's understand how this happens.
These outfits are based on using the com puter to handle all correspondence and transactions. The "office" may not have any people in it at all-- that is, people whose job it is to understand and deal sensibly with the problems of customers. Instead, there may just be keypunch operators staffing a Batch System, set up by someone who has long since moved on.

The point of a batch system (see p.45) is to aseve money and bother by handling everything in a controlled flow. This does not mean in princlple that things have to be rigid and restrictive, but it usually means it in practice (See "The Punch Card Mentality," p. 29.) The system is set up with only a fixed number of event types, and so only those events are recognized as occurring. Most important, your problem is assumed to be one that will be straightened out in the course of the system's flow. While there may be provision for excep tions-- one clerk, perhaps-- your problem has not seemed to him worthy of making an exception for.

Here is my solution. It has worked several times, particularly on book clubs that ignored typed letters and kept billing me incorrectly.

Get a roll of white shelf paper, two or three feet wide and twenty or more feet long.

Write a letter on the shelf paper in magic marker. Make it big, perhaps six inches to a word. Legibility is necessary, but don't make it too easy to read.

Explain the problem clearly.
Now take your punch card-- you did get one, didn't you, a bill or something?-- and mutilate it carefully. Tear it in quarters, or cut it into lace, or something. But make sure
the serial number is still legible. Staple $\frac{\text { it }}{}$ the serial number is still legible.

Now fold your letter, and find an envelope big enough for it to fit in, and send it, registered or certifed mail. to ANY HUMAN BEING, ACCOUNTING DEPARTMENT, or whatever, and the company's address.

This really works quite well

I am assuming here, now, that your problem has merit, and you have been denied the attention required to settle it. If we want justice we must ourselves be just.

There is one further step, but, again, to be used only in proportion to the offense. This step is to be used only if a meritorious communication, like that already described, has not been properly responded to in a decent interval.

We assume that this unjust firm has sent you a reply envelope or card on which they must pay postage. Now carefully drafting a must pay postage. Now carefully drafting a languge, the original once again, in civi language, the original problem, your efforts at attention, and so on. Now put it in a package reply envelope to the outside and send it

The problem, you see, has been to get out of the batch atream and be treated as an exception. Flagrantly destroying the punch card serves to remove you from the flow in that fashion. (However, just tearing it a little bit probably won't: a card that is intact but torn can simply be put in a certain slot of the card-punch and duplicated. Destroy it good and plenty.)

In all these cases remember: the problem is not that you are "being treated as a number. whatever that means, but that your case does not correctly fall in the categories that have been set up for it. By forcing attention to your case as an exception, you are making them realize that more categories are needed, or more people to handle exceptions. If more people do this when they have a just complaint, service will improve rapidly.

From all this, one last speculation creeps

 forward.Ivan Sutherland, in considering the structure of subroutining display processors, has noted that as you get more and more sophisticated in the design of a display program follower, you come full circle and make it a fullfledged computer, with branch, test, and arithmetic operations

If the somatic mechanism should turn out to have a program follower as described, it is not much of a step to suppose that it might have the traits of an actual computer, i.e., the ability to follow programs, branch, and perform manipulations on data bearing on those operations.

In other words, the digital computer may actually have been invented long before von Neumann, and we may have billions of them on our persons already.

It may sound far-fetched, but the mechanlams elucidated at this level are so far-fetched already that this hardly seems ridiculous.

THE COMPUTER FRONTIER
Regardless of what's actually in the cell, it is clear that being able to adapt molecular chemistry, especially DNA and RNA, to computer storage is a beckoning computer frontier.

This would make possible computer memories which are far larger and cheaper than any we now have.

Basically we can separate this into two aspects:

The DNA Readout. This part of the system would create long molecules holding digital information.

The DNA Readin. This would convert it back to electrical form again.

Weird possibilities follow. One is that (if chemical memory is generic, rather than idiosyneratic to an individual's neural pathways) knowledge could be set up somehow in "learned" DNA form, whatever that might turn out to be, and injected or implanted rather than taughs. Weird.

As our ability to create clones improves, we could clone new creatures, or genetic "improvements" ${ }^{\text {" }}$ - which, considering the racehorse and the Pekinese, means "those sorts of nonviable modifications supported in human society." And of course that ghastly stuff about building humana, or semi-humans; having traits that somebody or some organization, ulp, thinks is desirable..

But the real zinger is this one. It might just be a small accidental printout meant to test the facility, or maybe just a program bug--
-- but the system could output a virus that would destroy mankind.

BIBLIOGRAPHY

James D. Watson, Molecular Biology of the Gene Beautifully written; meant for highschool acience teachers. But potentially formidable; if so, stari with his autobiographical The Double Helix, which is a gas.

Mark Ptashne and Walter Gilbert, "Genetic Repressors." Scientific American, June 1970, 36-44.
8.E. Luria, Life: The Unflisished Experiment.
Scribner ${ }^{\prime}$ s.

Leuts Thomas, The Lives of a Cell. Viking. \$7. Eloquent writing ro poputarize, among other things, the New Genetic view that your modern animal cells, and mine, acrually contain various fungi and other Etray ding-a-1inge that slidinto one of our ancestora and found useful wark, join-

sPand \& COMPUTERS

It used to be fashionable to say

"The brain is a computer. ${ }^{\text {H }}$
is a nologram."

THE SRAIN

Almost nothing is known about the brain. Oh, there are lots of picture-books showing cross-sections of brains... Maybe you thought it was just a big caulifiower, but it's full of strings and straps and lumps and hardiy anything is known about any of it.

Clinical evidence, of course, tells us that if this or that part is cut out, the patient can't talk, or walk, or smell, or whatever But that doesn't come close to telling us how the thing works when it does work. The histologists, the perceptual psychologiats, the anatomists, Beautiful example: the split-brain stuff, which 1 just better not even bring up here (see new Maya Pines book, Harcourt Brace).

We used to dissect brains when ! worked down in Dr. Lilly's dolphin lab. Dolphin brains are about 1.2 times the size of ours, and Lilly quite reasonably pointed out that this might mean dolphins were smarter than us.

And, of course, the bigger whales even smarter. We had a killer-whale brain in the deepfreeze that was about $2 \ddagger$ feet across. And whales come much bigger than that; the Killer's maybe a quarter the length of the Blue.
(I should point out here that Lilly's publicity on the intelligence of dolphins was a little too good: it somehow didn't get mentioned that dolphins are just very small whales, the only ones you can feasibly keep in a lab. So think of whales as the possible super-smarties, not just dalphins.)

What's that you say? That "brain size isn't what counts"? That's an interesting point.

People with amall heads are by and large just as smart as people with big heads. That's one argument.

However, people have much bigger brains than almost any other animals. That indicates something too.

I believe that the only other animals with very big brains are elephants and whales. (An anatomical explanation: the weight is supported on the man by balancing it, on the elephant by a heavy and comparatively inflexible neck offset by a grappling tool, and in the whale by putting it in the front of a torpedo. But most other anatomies couldn't manage a big brain, so they can't evolve one.)

Anyhow, so the scientific question is whether big-brained species are smart. Well, dogs are smarter than rats..

But about these other guys in our league and beyond. How do we know soientifically that "the size of the broin isn't what counts"? Because obviously they're not as smart as we are, people say. Therefore it isn't brain size that counts. The depth of this logic should be evident. (l've even heard people say, "Of course they're not as smart. They don't have guns.")

Pay close attention to an elephant sometime.
Working elephants in India respond to some 500 different oral commands.

Can you think of a 501st thing to ask an elephant to do? (a) rather guppose it could oblige.)

Anyway, the dozen whales l've known per sonally were smart as hell

It used to be believed that memory was exclusively a matter of synaptic connectionsthe gradual closing of little switches between nerve cells with practice.

It is now known that temporary or short-term memory is syruaptic, but something else takes place after that. It's believed that after a certain period, and it has something to do with rest and sleep, memories are trans ferred to some other form, preaumably chemicsl. But how?

My friend Andrew J. Singer has a beautiful hypothesis that wraps it up. His guess is that memories are moved from synaptic storage to DNA (!) storage during dreaming. or more specifically REM sleep. I like that one

By browsing this book you may have more sense of what computers are doing, can do should do.

What will you do now?

By reading this book in some detail, es pecially that difficult machine-language stuff (see "Rock Bottom" and "Bucky's Wristwatch," pp 32-3), or the pieces on specific computer languages (pp. $16-25,31$), you really should be mentally prepared to get into programming, if you dig it.

Maybe you should consider buying your own minicomputer, for a couple of thousand. Or (if you're a parent), chipping in with several families to get one. Or a terminal, and buying (or cadging as cadge can) time on a time-sharing system. Maybe you should start a computer club. which makes it easier to get cast-off equipment; if you're kids, write the R.E.S.I.S.T.O.R.S. (p. 47). If you have a chance, maybe you should take computer courses, but remember the slant these are likely to have. Or perhaps you prefer just to sit and wait, and be prepared to speak up sharply if the computer people arrive ready to push you around. Remember:

COMPUTER POWER TO THE PEOPLE! DOWN WITH CYBERCRUD!

Computers could do all kinds of things for individuals, if only the programs were available. For instance: help you calculate your tax interactively till it comes out best; help the harried credit-card holder with bill-paying by allowing him to try out different payments to different him to try out different payments to different
creditors till he settles on the month's best mix. creditors till he settles on the month's best mix,
then typing the checks; WRITING ANGRY LETTERS then typing the checks: WRITING ANGRY LETTERS
$B A C K$ to those companies that write you nasty $\overline{B A C K}$ to those companies that write you nasty letters by computer; helping with letter-writing in general. You'll have to write the programs.

How do you think computers can help the world?
What are you waiting for?

THE COPPER MAN WALKED OUT OF THE ROCKY CAVERN

THE MITIEST COMPUTER?

The focus of attention in genetics and organic chemistry has for a decade now been the remarkable systems and structures of th

DNA is the basic molecule of life, a long and tiny strand of encoded information. Actually it is a digital memory, a atored representation even duplicate the creature around it.

It is literally and exactly a digital memory Its symbols are not binary but quaternary, as each position contains one of four code molecules however, as it takes three molecules in a row make up one induvidual cod of possible symbols is 64-- the number of possible combinations of four different symbols in a row of three. f don't know the adjective for sixtyfourishness, and it's just as well.)

The basic mechanism of the system was worked out by Francis Crick and James Watson who understandably got the Nobel Prize for it. The problem was this: how could living cells transmit their overall plans to the cells they split into? - and how could these plans be carried out by a mechanical process?

The mechanism is astonishingly elegant Basically there is one long molecule, the DNA molecule, which is really a long tape recording of all the information required to perpetuate the organism and reproduce it. This is a long helix (or corkscrew), as Linus Pauling had guessed years before. The chemical pro cesses permit the helix to be duplicated, to become two stitched-together corkserews, and then for then to come apart, unwinding to go their separate ways to daughter cells.

hely

As a tape recording, the molecule directs the creation of chemicals and other cells by an intricate series of processes, not well understood Basically, though, the information on the basic DNA tape is transferred to a new tape, an active copy called "messenger RNA," which beconea an actual playback device for the the pian atored on the original

Some things are known about this process and some aren't, and I may have this wrong. but basically the DNA-- and its converted copy, the RNA-- contain plans for making all the basic protein molecules of the body, and anything lise that can be made with amino acids. (Those nolecules of the body which are nof proteins or processes brought about by these kinds.)

Now well may you ask how this long tape recording makes chemical molecules. The enswer, so far as is known, is extremely puzzling.

As already mentioned, the basic code molecules (or nitrogenous bases) are arranged in groups of three. When the RNA is turned on, hese triples latch onto the molecules of soupy interior of the cell. (There are twentyseven amino acids, and sixty-four possible combinations of three bases: this is fine, because several different codons of three bases can glom onto the same passing amino acid.)

Now, the tape recording to divided into emparate sections or templates: and each template doen fits own thing. When a template is filled, the string of amino acids in that section separate and the long chain that results is a particular molecule of significance in some aspect of the criter s life processes-- often a grand long thing that folds up in a certain way. exposing chemistry of the cell .

One theory about the mechanics of this is that a sort of zipper slide, called the ribosome, chugs down the tape, attaching the called-for amino acids and peeling off the ever-longer result

Now, here are some of the funny things that are known about this. One is that there is a particular codon of three bases that is a stop code, just like a period in ordinary punctuation This signals the end of a template. Another is that the templates on the tape are in no particular order, but distributed higgledy-piggledy. (Geneticists engaged in mapping the genes of a particular species of creature find that the gene for eye color may turn out to be right next to the gene for length of tail-- but where those are really, and what the particular molecules do that determine it, are still mysterious sorts of question.)

Here is some more weird stuff about this
Large sections of the DNA strand are "dark," it turns out. just meaningless stretches of random combinations of bases that don't mean anythingor ever get used. This ties in, of course, with the notion that genetic change is random and blind: the general supposition is that genetic mutation takes place a base or two at a time. and then something else activates a chance com
bination in a dry stretch that turns out to be bination in a dry stretch that turns out to be useful, and this is somehow perfected through of successive mutation and evolution.

Amazing use is made of these mechanisms by some viruses. Now, viruses are often thought of as the most basic form of life, but actually they are usually dependent on some other form and hence more streamlined than elemental. Well some viruses (but not all) have the capacity for inserting themselves in the genetic material breezing up to the DNA or RNA. unhooking it in a certain place and lying down there, then being duplicated as part of the template, then unhooking themselves and todding away-- both parent virus and copy. I can't for the life of me think of an analogy to this. but I keep visualizing it as happening somehow in a Bugs Bunny cartoon.

CONTROL MECHANISMS
Now, all cells are not alike. From the first beginning cell of the organism (the zygote), various splits create more and more specialized, differ entiated cells. A liver cell is extremely different from a brain cell, but they both date back by they have different structures and manufacture different chemicals

One simplification may be possible: the "structura" of a cell may really be its chemical composition, since cell walls and other struccomposition, since cell walls and other struc certain tricky molecules. Okay, so that may ceduce the question alightly. How then does the cell change from being an Original (undif the cell change from being an Original (und cells that manufacture particular other complex chemicals?

One hypothesis was that these other cells have different plans in them, different tapes. But this theory was discarded when John Gurdon at Oxford produced a fresh frog zygote from the inteatinal cell of a frog (which accordingly, in due time, became a frog de facto). This proved, most think, that the whole tape is in every cell.

Thus there must be something-or-other that blocks the different templates at different times (You there, now you're a full-findged epi thellal cell, never mind what you did before) and selects among all the subprogruns on the tape
 for every gene fectivelylabela the gene. Thia initiator area containa a chemical code unf

 esctione of the genea which they have been opecifically coded to rapregis. Research in thia area muit now find of metabolise, impunology, dever which block and unbiock apacific ganes, and how thesefit in the overali graph the extraordinery beaty of thig clockwork.

Much presaing research in molecular biology, then, is concerned with searching for and off at different times in the careers of the and off at different times in the careers of the tion those of all other living creatures, inend turnips.

COMPUTERISH CONJECTURES

The guys who spectalize in this are usually chembsts. and presumably know what they're doing, so the following remarks are not intended apectives often hew perwe've covered so for might seem to have mater e coved oo far might seem to have a cer

DNA and RNA, as already remarked, may without distortion be thought of as a tape. Indeed on this tape is a data structure, and indeed it is a data structure which seems to be involved with the execution of a program-- the program th

There is evidently some sort of program follower which is capable of branching to dir erent selections of (or subprog arious factor in the cell's environment $-\cdots$ or perhaps its age.

Now, it is one thing to look for the paricular chemical mechanisms that handle this That's fine. On the other hand, we can also consider (from the top down) what sort of a program follower it must be to behave like this (This is like the difference between tracing out particular circuitry and trying to figure out the structure of a program from how it behaves.)

At any rate, the following interesting conjectures arise:

1. The mechanism of somatic reproduction is a subroutining program follower-- not unlike the second program follower of the subroutinin
display (see p. That is, it steps very display (see p That is, it steps very and with each new step directs the blocking or unblocking of particular stretches of the tape.

As the program is in each cell, presumably it is being separately followed in each cell (This is sometimes called distributed computing.)

In each cell, the master program is direc ting certain tests, whose results may or may no ting certain lests, whose results may or may no
command program branching--successive steps command program branching-- successive ste be testing for particular chemical secretions in its environment; it could even be testing a counter
3. (This is the steep one.) If this were so, we might suppose that this program too was stored on the DNA, in one or more program areas; and it would therefore be necessary to postulate some addressing mechanism by which the program fol lower can tind the templates to open and close. (And perhaps further sections of the program.)
4. Indeed, it makes sense to suppose that such a program has the form of a dispatch table ciated with specifications of the tests which are to cause the branching.

These wild speculations are offered in the spirit of interdisciplinary good fellowship and good clean fun. Whether (1) and (2) have any actual content. or are merely paraph it what is already known or disproven,
know; somebody may find the rest suggestive.

Two more observations, though. These are not particularly deep, and may inde obvious, but they suggest an approach.
5. There is definitely a Program Restart: to wil whateyer it ia that turns an old differentiated inteatine cell into a fresh zygote.

6. Cancer ia a runaway subroutine

bisliography (tor mote a inft)
Hax Gobind Khorana, Willaxd Glbbe lecture, May 1974 "Progrese in the Total Synthenis of the Tyr

UNPUBLISHED STRRY

One auch youncreer want on \& highachool
trip to a suburban Ftilledelphta pollice Aeld-trip to a suburban Fthijedelphts police
aretion. nid un a damonatration of the polte
rumote informetion ayatem
The pollce who wery demonatrading it, timple it was to oberve the dial-in numbers,

When this led pot home, he merrily won

A fow day ater a man ceme to his house
from the FBI. He wre ovidently not e regular oparative but a technical type. He anked very
nicely yf the boy had a terminal. Then the PBI nicely If the boy had a terminal. Then the PB
man anked very nicely if he had put in thase man asked very nicetly th ho had put in thate
names. The boy edmitted. grinning. that he had. (ivve
The FBI mum asked him very, very nicely
not to do it agein.

Che culprit. "I had them down for crimes iuke
Intellictuel murder." What could happen to the

Doos that make you tael better?
philadelphians and crooka please note:
This happened Ave or atir yeart ago. and without I doubt the aytum ts by now totally wecure

LOUSED-UP RECORIS A CASE IN POINT

The question of "privacy" in the aboltrast
jen"t reality an tosuue. Who carea it cod sees: under your clothes? The problem ta what hap-
penat 10 you on the basta of people'e seceate to
"DATA BANKS"
 - computer.

The use fuliness should be ovident.
 Kocidd of Repieif te ndivtual. Aut thrs There is il 1 ot of in in orratition stored

 In the face of this sort of possi-
bing cy, computor people have been worry-
ing for years ; noteworthy is the study ing for years; noteworthy is the study
by Alan Westin that originally sounded
the alarn, and his too-reassurlng follow Mp study, of some data-rathering organ-
izations (seemibliography). But he scary data banks the ones that evidently
keep, track of pointici dissenters, aren't talking a
Schuartz piece).

It may seem odd, but Nixon has said Me ivacy problem. cynics may noke about
Phat his concern actually is; but a a nore credible stand was taken by vice-presicredible stand was taken by vice-presi-
dent Ford at the 1974 National Coapurer
Conference. Ford expressed personal Conference. Ford expressed personal
concern over privacy, particulariy cons concern over privacy, particulariy consid
ering a proposed sysiem canled FEDNT,
which would supposody centralize governcocords of a broad vartety

 it isn't in the constitution; getting
such s.right formalized and agreed upon
is going to be no small But that isn't what bothers ne.
Consider ancer of certain elected officials whor
devotion to, and conception of, democracy devetion to, and conception of, democracy
is lately in doubl, things are scarcely
as abstract as all that. considering how 1s lately in doubt, things are scarcely
as abstrat as all that considering how
helpful our government has been to brutal
 (and Which used aports arenas for deten-
tion just as John Hitche did did.-) we can
ho 1onger know what use any information

 cyes on the watergate hearings, but they
chilied my blood.)

THE AR
to lute namp hase kept changing, ponsibly
 if you mould, reed an.

 people have thiked sbout, and in it
zapy interesting morls, ponible
paritenn. etc., for vish there is paritions.

Note the in colling you thin I su Hote that in cetiling you thin in pub-
draving onty on intoration that is purn
Hecy availatie, and draving conclueions troen to the way one usually drave conclu-
tona Hare is how the greet aby is sup-
posed to mork.

I/wense radars ican over the hori
looking for poosible reflections

Aha: something it coning.

it takes oft

 Oncosing ataritle opeodi meybe 15,000

no proty

minve axd roas.
 Multiple warise de. One rockot can carty

 Aen te ort of at dend duct: the ono

"n, yen, ar.-

 xoupt avorytody Alve.

 starnqiast.)

SIMUATION

Con TV howe the space Voyagers ztind In front of the "computer" and wk in nim. unnat-
urally loud volces what will be the resulut of so-nend-ow. The computer'e orecular reply it infal-
iflie. On TV.)
..........

Let there be no myatery about this. Any Simulation. You can simulate in detail or crudely; your aimulation can embody any theortes, senuible
or utupla; and your resulta may or may not cor rewpond to revelity.

A "eomputer prodiction* is the outcome of to stmulation that eomeone, erldenty. is willing
to etend behind, tsoe "computer election predic-
Hons " 65 , Thase points have to be otressed becsuse if chare is one computer sectivty which is preten
tounly presented pnd otresed, it is aimulation. Espectauly to naive clients. There is nothing. wrong with slmulation but there is nothing super
netural shout $t 1$ ether.

dnocher rerm whis

In the loose sense. Bimulation or mode Ung consiats of caiculations about any des-
cribsile phoenomerna- for inatince. optical equation. In optcal modelling (and this is how
they deedign today' ture in created which represents the curvature,
mounding, etc. of the sepernte gloses in a mounding, etc. of the separate glesses in a lenn.
Then "simulating the patha of individual reyt
of light through that tens, the computer program Then "slmulating" the pathe of individual reyt
of light through that tens. the computer program
teisis that lena deaign for how well the rays come together, dendgy wor how well the rays in the detign in nged and tried agaln. and quite distinct one-- is that which represent the complex interplay of myrind units, Inding
out the upshots end consequences of intricate premisot: In tratic simulations, for instance, It it easy enough to represent thourancis once, cars Hke drivers- crestng very convincing trafic dats structure.

Basically uimulation requires two things: roprosents the tinng you're simulating in the
eapects that concern you; and then in in appecte that concerch you; and then a program
dose pomething to these data, that is in some ay like the procens you're concemed about event of signincance enactod by the program
mund momehow leavo its trace in the data struetur The line between simulation and other pro gramming the not always clear. Thus the calcu-
lation of the future orbtia of the plareta could be
celled "etmulations

The most intricate cases, though, don't particulariy rownile any other kinds of progrems.
The intricate enectments of physical movementa, eapectally aw arme end myridede pith mixed and colliding populationz, are eapecially interesting An a recent Sclontinc, Americen article, smula-
tion belped to underitand posatible stremers tion helped to understand possible stresmers
of atars between gulaxie: as resulting from nor-

 Modele of complex end changing ratea are
anther intereting type Enticting complex indige. Whowe anountse are constang complex changing In terms of percentage muttiplierte of onch othger,
cound esesy in principle, but their concequence can be quite turprising. (See "The Club of
Romen," p. 68 ?

To tmagtine the kinde of mixed-cane myriad
 resord deveribing each bilvidual out of mellifone. and apecifying his probabilition of action and
airferemt praforences mecording to vertoua theorioe
-- then follow through whole eocieties behavior
 Any computer longuage can be unod tor
ange kina of simulation. For simulations invol-

There sre in numbar of apecial "elmulation nuve additional foncures weaful, Lor Instencos, in

The hat-ppocosting fanstice, of oourco,

The thing la, any mot of iseumptions, no sersen diluplay, or some other view into the obvlously thene enactmentr (or momatime "prodiction"") are wholly fallible, deriping eny valldity they may have from the woundness of the Intital datic or model.
 However. They have another Importent toin, one which is going to be very Impor ant in education and, I hope, genorral pubblice nore widely mid become more usable.
 The avaliability of simulation modela cen thang ensier to underatand. Well-set-up imulation programs, avaliable esatily trough Ierminals. can be used an Staged Explanatory Structures and Theoretical Exploratlon Tools. tructures and Theoretical Exploration Tools. he unar can build his own wara, his own mocietios, his own econorate conditions, and wee that followe from the ways he sets them up. mporianty, different theories con se applied to auences of one or the other point of vew.

(Indeed, stmbar fecilhies ought to be svail
for Congress, to allow them to pour en new ax through the population and see who sutters. who gains...)
I should point out here that for this pur-
pose-- tnsightrul simulation- you don't always pose-- ingightul simulation- you don't always umulation garnes, ${ }^{\text {n }}$ which if well designed give axtraordinary insights to the players. Allen
Caihomer's brilliant game of Dtplomacy, for intance (Games Research, Boston; avallable from Grentano's. NYC) teaches more about international polltica than you could suppose possible. I am wo intrigued by a game called "Simsoc," worke ment of socia) structures from a state of random reation, but I haven't played th. (Clark C. Abt. of Abt Associates. Boston, ins also done
abl of Interesting deaign here.,

A last polnt, a very "practics:" applisation. Simulation makes it posstble to enact inings with-
out trying them out in concrete reality. For inout trying them out in concrets reality. Gor
cance, in the lens-design aystems mentloned earlier, the lenses don't have to be actually built
to find out their detailed characteriatica ond out their detailed cheracteristics. Nor in it necessary to build electronic ctrcultry, now
to and out whether it will work-- at lesat that's what the salesmen say. You can simulate any circuit from a terminal. and "messure" what it does al any dime or in any part with simulated
metera. Similariy. when any computer Is det gned now. it's stmulated before it's built, and programin are run on the simulated computer. a enected within a real computer, to see if it behaves an intended. (Actuatly there are nom
hot-wire types who insist on building things hot-wire types who insist on building thing computer designers do this.)

With automoblles it's harder; but CM, for Its cars belore they're ever bult-- bo that denigners can rediatribute welght. change steer ng characteristica and so on, till the handiling seem to like.
bibliography
$\frac{\text { Stmulation magazine la the oftheial journal of }}{\text { Stmulation Counchls. Inc. the curlously }}$ amed society of the Simulators. It cosis Box 2228, La Jolla CA 92037

Por all 1 kfrow you get snnual membershlp free with thet. I've always wented
to foin but it was aiways the one thing too many: but their conference programs are mensational. Where elae can you hear papers on ruaffic, blology, military hardware. whother predicion and electronic dealg

THAT'S WHOT MKEES HORSE RACINC
 In an oxtension of simulation in a Calriy obvious If simulation means the Enactment of some
avent by computer. Operations Renearch means doing these onsectmenth os try out different atrat

Operations research really began during World War If with nuch problems as submarine
hunting. Givan so and-to many plagen, whit hunting. Givan so-and-to many planen. Whit
pattern shouid they ny in to make their catching
subinarines most likely' Building from cortint submarines most likely" Builing from certisin
"ypes of known probablity, (but in areas where
"true" mathematcal "true" mothematical answers were not essily Ind the beet ("optimal") atrategies for many
different kinds of wetivity.

Basically what they do is play the slyustion out hundreds or thoubands of tmes. enacting it
by computer, and using dice-throwing technique to determine the outcomes of all the unprediciab phing. the program can report on what strategie lurned out to be moat effective

Example. In 1973 the Saturday
Review of
plece on
the solutlon, by or techniquas, of the game of Monopoly.
Effectively the game had been played thousands of thes, the dice thrown perhaps millions, and different strategies agoingt each other in a varying mlx: Always Buy, Buy Light Green, Utiltics and Boardwalk, ate

A complete sotution was found, the alrategy which tende (over many playa) to work bett.
forget what it was.

Using another technique. the game of football was analyzed by Robert E. Machol of Nooth Their taee was to teat various maxims of the geme, to find out which common rules about beneficial plags were true. What they did wat
replay fifty sis blyreplay fifty six big-league football games on :
play-by-play basis. rate the outeomes, and see which circumbtances proved most advantugeous the average. I've mislaidd the reprint (Operations Research. a recent year). and being totally $1 \mathrm{~g}-\mathrm{-}$ ings. Anyhow. that's where to took. (Othimen feomed)

The earler explanation or operations Research wann't quite right. It's any syalematio
study of whint works best. Computers can help.

bibliography

Irvin R. Hentzel, "How to Win at Monopoly."
Saturday Review of Science. Apr 73, 4tVirsti Carter and hobort. E, Machol, -operationat
Research on Footsin

GRKT ISSUES

WHITHER THE FEI?

 tuant creating the vast network oit or-

But we wey certenny is ware of fech:

Edumn Burke

in sane iof peopie think conputers site
 Che nilitery use so many of then.

 inventories of blankets and boobspandous
toilet paper, was the prime mover behind olet paper, was the prime mover behind
the developant of thee Cobol business
 of course that's not the interesting

The really interesting stuff in con-
ers all cane out of the nilitary. The Departaint of Defense has a branch
called ARPA, or Advanced Rossarch and
 It is thus a suprene irony that ARPA

 thar's sioply because they have applii:
cations in every field, and the ailitary
are just where the money is. Jary $\begin{gathered}\text { Just to engs- } \\ \text { enumerate }\end{gathered}$ Conand and control-- the problea
of keeping irick oftriors done phat to
whem and what's left on both sides, It is solemin irony that the great
 may be a proasotype for offices and con-
ference roons of the future. "Avionics"-- all the electronic
gadgers in airlanes, including those gadgets in airplanes, inchudiag hinese
for navigation. (A recemt magaz
piece described how tondorful it folt plece described how wondorful it feit
to fly tho F-111. which has a conputor
managing the Feol of the Controis for
you.)
 and nissilias cerambe your voine anong
various Air frequencios or whatevor they
do. "Intelingence"-- computers aro used
to colinte information coining, in fros
various sourcos. this is no inple prob various sourcos. Thls is no isimple prob
jon-u hou to find out what is oo from a tangle of contradictory information;
think about it. Dopt think about how
we get that inforation.
"Survell11ance"- it can't all bo
romatic, but various techniques of
 doubt boing applied to the hamense quan-
titios of satilite pictures thet come
bsck.
cid you know our big sifd sitellite oither chirps back its pictures by
radio, or partchutos then as Droppings?)
 los ing ground to
ovan has
conputers

[^4]

The computer companies are often referred to in the field as "Snow White and the Seven Dwarfan-- - phrane that stays the same even as
the lesser ones (like RCA and General Electric) the lesser ones (like RCA and General Electric)
the out of the business one by one. The phrase get out of the business one by one. The phrase
suggesta that they're all alike. To an extent: but there is one company sufficiently different. and important enough both in its history and its continuing eminence. to require exposition here. This is Digital Equipment Corporation, usually pronounced "Deck," the people who first brought
out the minicomputer and continue to make fine stuff for people who know what they are dotng

Other computer companies have mimicked JBM. They have built big computers and tried to sell them to big corporations for the ir busines Aata processing, or big "acientific" machines and
tried to sell them to scientists.

DEC went about it differently, always designing for the people who knew what they were you exactly what their equipment did.

First they made circuts for people who wanted to tie digital equipment together. Then factured a computer (the PDP-1). Then more factured a computer (the PDP-1). Then more
computers, increasing the line slowly, but alway telling potential users as much as they could possibly went to know.

The same for its manuals. People who wrote for information trom Digital would often get. not a summary sheet referring you to a local salea office, but a complete manual (say. for the PDP-8), including chapters on programming, how to build interfaces to it, and the exact timing and distribution of the main internal pulses. The effect of this was that sop histicated usersespectally in universities and research estabown interfaces, their own modifications to DEC computers, their own original systems around DEC computers.

This policy has made for slow but steady growth. In effect, Digital built a notlonal cusThe kids who an undergraduates and hangers-on built interfaces and kludgey arrangements, now as project heads bulld big fancy systems around DEC equipment. The placea that know computer usually have variety of DEC equipment around

Because of the great success of its amall computers, especially the PDP-8, even many com puter people think they only make small compu-
tera. In fact their big computer, the PDP- 10 , is one of the moot successtul dime-sharing computers An example of its general esteem in the field: it is the host computer of ARPANET, the national funded by the Department of Defense; basically this means arpanet is a network of PDP-10s

DEC's computers have always been designed by programmers. for programmers. This made not appear, even though the higher numbers did not appear. even though the higher numbers did
and the grapevine had it that the 11 would be a sixicen-bit machine. It proved to be well waiting for (see p. 22), and has since become
the standard sophisticated 16 -bit machine in the $\frac{\text { the standa }}{\text { induatry. }}$

An area DEC has emphasized from the first has been computer display (discussed at length on the flip side). Thus it is no surprise that GT40 (see p. Sy) is an outstanding design and suceess. (And the University of Utah, currently the mother church of computer display, runs its graphic systems from PDP-103

In this plucky, homespun company. where even president Olsen is known by his first name (Ken), it is understandable that marketing pizaza takes a back seat. This apparently was the vie of a group of rebels. led by vice president Ed deCastro, who broke off in the late sixties to start \& new computer company around a 16 -bi
computer design celled the Nova-- rumored to have been a rejected design for the PDP-11. The company they started, Data General, has not been afraid to use the hard sell. antl between their hard sell and sound machine line they've seriously challenged the parent company

But Digital marches on. the Ger-puter Fur.' computer company. If 1 BM is computerdem's Kodak. whose overpriced but quite reliable goods
have various drawbacks, DEt; is Nikon, with mix-and-match assortrient of what the hotshots want. That's pluralism for you.

(There were no PDP-2, 3 or 13)
Whot is a PDP? DEC's trode name for a con ${ }^{\text {uretr }}$.
${ }^{(16}$ bits)

I'm not setting any favors from DEC, i' just saying about them what people ought to of the warmin and courtesy with which people from Digital Equipment Corporation have taken conference after conference. in the early sixties they had one man in
one small office to service and sell all of New Jersey and New York City. But that one guy. Dave Denniston, spent considerable time responof a to my questions and requests over a period
of couple of years. and in the nicest possible way, even though there was no way I could buy anything. You don't forget treatment like that.

PERIPHERFLS FOR YOUR MINJ

Some kinds of peripheral devices, or conthrough peripherais can you look at or hear
results of what the conputer does, store quantities of information, print stuff out and

Trying to print lists of available stuff here is hopeless. There are thousands of
perimherals from hundreds of nanufacturers. peripherals fron hundreds of manufacturers.
If you buy a mini, figure that your peripherals
will cost $\$ 1500$ (Teletype) on will cost $\$ 1500$ (Teletype) on un. But mainten
ance (see 5 . 5 , is the biggest problea. If
you buy priplierals fre then you buy periplierals from the ranufacturer of
the computer, at least you can be sure someone will be willing to maintain the wiole thing. ofren repair their own equipment, but nobody
wants to be responsible for the interface.)
periphyou want a list see "Table of Miniperipheral Suppiiers," Computer $\frac{\text { Decisions, }}{}$,
Dec 72, 33- 5 ; more thorough poop is offered
by Datapro Research corp by Datapro Research Corp; $\frac{1}{}$ Co
Route 38, Moorestown NJ 08057 .

As to the serious matter of disks, an ex-
cellent reviek article is "Disc storage for Minicomputer Applications, "Computer
June 1973 , $55-66$. This resigiews both
principles various manafacturers offer. Also helpfui on disks and tapes: "Haking
a of Ministorage." by Linda Derner. Com:
puter Decisions, Feb 74, $32-38$. Best recent
Survey.

YOUR TURTLE AND MUSIC BOX

 and looke to the conputar 1 ike A Teldetye. Thay will ror sither of these you noed a Controllex (81300).

No Joke haze. Poople ere etill making Bratily copies of thinge by hand. But the way

 from нопеэveli.

- availiablat adaptor kit tor imen syatel 3 ar tat

MAGHETC RECORTINE MEDIA

 information: each has its own medius, or fors of storage.

The ones witch ara zemovable (called "ro-
eprectively standardized ay tam
1/4-ineh magnatic tape.
Pre-1965: 6 tracke data, 1 treck parity.
Prost-1965: e tracks data, 1 track parity
2741 disk of removable plattors sise of a
stack of suack of re
layer cake.
330 disk but bigger cake.
disk Same but bi
plantic case, 1 ize of coolio hat, encloding disk.
loppy disk
Plaxible: card-thin diek enclosed in

data cell (not very compon)
plaitic stripa pulled out of wodgePlastic atripa pulled out of wedge-
shaped tube arranged in a roteting

efpectively standardizeo ay others
LiNCtape
$3 / 4-$ inch tape on a 4 -ineh rees (aits in pocket), apecielly costed aghinat ertic-
tion, daveloped at Lincoln Labs for hime tion, developed at Lincoin Labs for hisc
computer tseef p . 41).
okctape

Cartridae

 coseing mape sioco quathout incerfac

hardit standardized at all
"carnetter"-- philipe-type sudio-type catiette
 Genaral and othar: have sapa.

ectronicas. And it meto.

IBM announced a number of worthy objectives when the 360 line was announced in 1964 . IBM should certainl.
at least their lip service to these noble goals.

1. "One machine for all purposes, business and scientific." (Thus the name " 360 " for the "full circle" of applications.)
By "business" this mainly meant decimal, at four bits a digit. By "uasinessis theant grafting 4-bit decimal hardware to an otherwise normal binary computer, and making both types of users share
the same facility.

In their 360 line, IBM also replaced the industry's stan-
 ("Extended Binary Coded Decimal Information Code"), ostensibly
built up from the 4-bit decimal code (BCD), but beifieved by. cynics por have been created chiefly to make the 360 incompatible
With other systems and terminals.
can be moved freely from machine to mathe program: thus programs
Unfortunately this compatibility has been undermined by numerous factors, especially the varizety of open undermined by
including half a dozen major types, and the ianaters.
 tors tend to make changes necessary to nove programs besteen con
puters. white cone effect of this standardization", has indeed
been to faciilitane the noving been to faciiitane che noving of programs from small computers

The secret of it all, of course, lies in ram's keen under-
standing oof inow to sell big computers. The comptroller oit somehody ifke him generally makes the finel comptroller, or

THE BIG QUESTIONS

Between the trade press and dozens of scquaintances in the field. almost everything : hear about IBM and its products is negative (say five or ten to one) -- except from proople who work or have reladves there.

Porhaps th's just sour grapes. Or the authorityhating character of research types. Or selective reading

Or perhaps there really tie something sinister.
Tha major questions ars these.

1. How clean is their salesmanship?
. Are their syatems unnecessarily difficult or cumbersome on purpose?
2. How deep is their system of entrapment and forced commitment of the customer? How necessary are the de-standardizations and the
3. Do they have a final liberating vision? Do they really, after all, intend to bring about a day when life is easiez for people? When the despeciluly of present-day computer systems history's judgment on IBM in our time may narrow down to that simple question

In this light it is not hard to understand

 IBM's atand on software copyrights vs. patents. bould against programs belng pas, but argues in favor of copyright, whose protection is probably more limited to the particulars of a given program. If they have their way. It would be assured that IBM could use any ingentous whereas all unnecessary complications of bulky cumbersome software would be covered in entiroty by copyright.)Finally, it has not been demonstrated that BM has any general ability to make systems conceptually simple and easy to use. ITwo good examples of hard systems are the Mag mers, but hardly for secretaries. for programto be no emphasis on elegance or conceptual simplicity at IBM. Those who adopt such a philosophy (such as Konneth Iverson) do so on their own

As mentioned earlier. this has somathing O use lem's aystems because they have to, boing equipment, so there is no impetus to design programs or systems to run on stmple or clea minded principles, or dress out intricate systems so they can be used easily.
4. the image.

It is hard to analyze images, corporate or perwonal. They are often received in such differ ant waya by different populations. But there may be commonality to the $18 M$ image as generally seen. The image of IBM invoives some kind of cold magic thingu are percolating in there itency. Eut other connotation of efficioncy aside, the 1 MM ide that seeme to have two other principal components authoritarianism and complacency. It is this mixure that longhairs will naturally tind ravolting. This oame combination, however, may be exactly what it is that appeale to businose-management r
if you heally want it
you can got character-by-character The new Stock Exchange syatem uses Telecommunicatione Accese Method" permitting non-ibM torminals to ranpond character-by-character. Junt as syaiama
for non-computar-people should.

Trying to use this input-output program on your local IBM computer is rogram protlom, though. Abide from amon of ite compal costile. there is the prob Ire of IBM eotrware eprogramming would probably be naconsary up end down the line

What will IBM do next
speculation is almost futile, but necessary anyhow. The prospects are fascinating if not terrifying

No one can ever predict what IBM will do: but trying to predict IBM's actions-- 1BM-watching is nobby in the Kremlin-watching-- is everybod everybody with. And uny things possibie, and determined only in the vaguest way by technical considerations, the question of what $18 M$ chooses they do we'll be stuck with. They can design our lives for the foreseeable future.

We know that in the future IBM. will announce new machines and systems, price changes (both up and down) in fascinating patterns. rearrangements of what they will "support," and changes in the contracts they offer (see box, "IBM's Control"). Occasional high-publicity spaeches by IBM high officers will condinue to be watched with great care

IBM's slick manufacturing capabilitios mean that practically any machine they wanted to make and put on a single chip, they could, and in a very short time. The grapevine has it that the Components Division, which makes the computer parts, has bragged within the company that it doesn't really need the other divisions any more -- it could just put whole computers on teeny chips if it wanted to.)

In this time of the 370, things are for the moment stable. The 370 computer tine is still their maln marketing thrust. Having sold a lot of 370 computers (basically sped-up 3608), their idea at the moment to sell conversion jobs to adapt the 370 to run the new "Virtual System" control program (VS or OS/VS or various other names). This system (which is, incidentally. widely respected)
makes core memory effectively much larger to makes core memory offecdvely much larger to ages programmers to use tons of core, by means of virtual memory: essentually geting peopla in the habit of programming as if core were infinite This extension of apparent memory size distracts from any inefficiencles of both locally written programs and IBM programs, thus tending to increase use and rental charges

When that marketing impetus runs out we'll see the next thing

The other new IBM inituative is whth smallar machines, the System 3 and System 7. being pushed see another new market. How easy and wheful their programs are in this area will be an imporiant question.

With the System 7. a 16 -bit minicomputer for $\$ 17.000$, IBM has at last genuinely entered the cost againes comparable machines, we can figure the IBM markup as being about 508, which Is typical.)

In addition, it is rumored that IBM migh put out a tiny businese mini, to sell out or OPD (Datamation. Dec 72, 139.) But really, who knows.
in addition to this huge-memory strategy for Its big machines. and the starting foray into specialized minisystems, there is the office strategy and "word processing."

I日M has conceptually consolidated ths various magic-typowriter and toxt services under the name of "word processing." which means any handilng of text that goes through their machinea
This superficially unites their OPD efforts (typewriteris and dictation machinot) with things goln on in DPD, auch as Datatext, and allays interdivisional rivalries for awhile. Also, by etressing the unity of the subject mater, it leaves the door open for later and more glimorous initatives. such an hypertext eystems (seen "Carmody' Syetam
in other words. the foot is in the door. Mr Bualnesaman has the iden that automatic typing
and thinge Iko that aro lBM's upecial province.

*

Pew firms anywhere have the conadence
to advertise generianly a product whith
is made by others as woll, as in IBM's
"Think of the computer as energy" serio

SHOLI INDIVIDUALS FEAR IBM?

Even if it is true, as Anonymous says (see Bibliography) that IBM intimidates people and keeps its enemies rom geting jobs at IBM-oriented establishments. that's not the end of the world.
Grosch, Could, Rodgers and McGurk are slive and working Nader, for example, has not been reported.

END OF THE DINOSAURS?

To a very great extent, lam's compute arket is based on big computers run in batch

Many people are beginning to notice, though hat many things are more sensibly done on small computers than on big ones. even in companies hat have big computers. That way they can be done right away rather than having to wait in line. is this the mammal that will eat the dinossur eggs?

On the other hand, a very unfortunate trend is beginning to appear, an implictt feud within is beginning to appear, an mplicif eud within computer approach. Those who advacate minicomputers are being opposed by menagers of the big computing installations, who see the minis as threatening their own power and budgets. This may for a long time hold the minis back, perhaps with the help and advice of computer salesmen who eel likewise threatened. But there will be no the microprocessors (see p. 44). And the inroad should begin soon.
(Others are growing to know and love true high-capacty time-sharing as a way of life, like hat offered for DEC. GE and Honeywell machines This. too, may begin to have derogatory effects on

Finally, it must be noted that almost all ble companies have computers, usually IBM computers and so an era of marketing may well have ended. It may be possible for 18 M to go on selling bigger and bigger computers to the customers who longer be exponential.

A GROSCH IRaFI

Herb Grosch, now aditorial director of Camputerwarid. Is peritap BM's wor at enemy. Once he worked for old man Watson, and was tha only 1 BM amployeo allowed to have a beard. Now, among other unings, hat it conterences at governmental hearings, and in letters to aditor

Yet IBM's main computer balas stratogy today if to strast the advan ages of big computars with lots of core menpory (and per ruade you you don't want highly Interacuve systeme or independent minicomputars).

And the fundamental rule stating the advantages of big computar

Finally, there if the popular doctrine of
iem's infallibility. Thia. too. Ia a ways from the truth. The most consplcuous examplo was
something called $\mathrm{TSS} / \mathbf{3 6 0}$,

An Interoating sxample of an IBM nonbrookthrough was the dramatic announcement in
1984 of tho 360 computer. portriyed as a machine which would at inkt combline the functions of both "buelnoes" computers and "sclentific" com-
putare. But other companies, such an Burroughs putare.
(with the 5500) had been doing this for somie time. The quaint anparation of powers between scientific computors (with all-binary storage of numbers) and business conpputers (decimal storage) was besed only on tradition and mar-
keting conidderationa, and was otherwise unde airabie. in amalgamating the "two typos," IBM wes only reucinding their own provious un necessary distinction. The drams of the announcoment derived in large measure from the
gitreas they had previously latd on the diviolon. (Fortune ran an internsting piece on the decision
itruggloe preceding the introduction of the 360 amputer, and the intarnal arguments as to whe thor there should be one line of computars or two Sae the five-billion-dollar gamble piece, Bibliography. 1

This ties in closely with another interesting aspect of the IBM image, the public notio
that IBM is a groat innovator, bringing out novel technologless all the time. It is well known In the fleld that they are not: IBM usually does no brling out a new type of product until some other company has ploneered th. pariser point, that the product offering is trategic meneuver.) But of course such facts do not appear in the promotional itterature, nor are they voluntecred by the salesman

The expression for this in the field is that IDM "makes things respectable." That is, adds other people's innovations to their product line, and decide it's okay to go ahead and rent or buy euch e product. This also sometimes

A few examples of things that were already on the market when I日M brought them out, often computers first offered by Ptisicol. virtual memory (Burroughe), microprogramming tintroduced commercially by Bunker-Ramol

This is not to say that IBM is inchpable of inovation: merely that they are never in a hurry about it. The Introduction of IBM proand what TBM brings out is always a carefully planned, profit-oriented step intended not to dislocate its product tins. This is not to tay that they don't have now stuff in the back room a potential arsenal of surprises of many types.
But it is probabie thes most of them will never But it is probsble thet most of them will never
be seen. This is because of lBM's "fmpact" problem.

Unique in IBM's position is the problem of fittung new products into the market alongald Its oid ones, Its problem is much worse. say, than that of Procter a Camble. The problem is
not merely th size and the diversity of its products. but the fact that they may interfere with each other ("fimpact" each other, they say) in very complicated ways. A program like cheir Datatext. for example. which allows cer mals. may fiect its typewriter tine from ter minals, may affect its typewriter line. These
are no amall matters: the danger is that some are no amall matters: the danger is that some
new combination of products will save the cus tomers monay 1 BM would otherwise be getting thnovatons must oxpand the amount tBM

These complications of the product 1 ine in a way provide a countorbalance to $18 M$'s fear some power. The corporation has an immenae inertia based on its existing product line and customer base, and on ways of thinking which have boen carelully promulgated and explain
throughout its huge ranks, that cannot be revised quickly or nlppantly Nevartheiess it is remarkable how at
every turn-- notably when people think iBM deciniona or stratogic moves which further concolldate their position. Often these seam to involve reatricting the way their computers will
(The most ironic auch countermove by tBM "unbunding" decition. IBM at last agreed to complaint from other software flimsi to stop givitg te programe away to people renting the hardwise. Glee was widespread in the induatry in proportion to what to would now chargo for the software. Not at ant, lism lowered Its com puter prices by a minumeula amount and slappe
heavy new pricas on the software-- often charges of thounande of dollare per wonth.)

all its salantinon in a geographic

MAC awitchiod over to General Electric
Wostern Electric Enginoering heasaurch
Centar pasied over lBM computer

Much as wome poopin would uke
 to be no documentation. You would think one auch viculm would write
an article ebout it it in were true.

TSS/380 was a dme-aharing system-that is, the control program to govern one
model of the 360 as a ume-aharing compute model of the 360 as a ume-aharing computar.
According to Datamation "IBM Phases Out Wor on Showcase T5S Effort." Sept, 1. 1971. 58-9) over 400 poople
of some 2000 m acrapped. a writeoff of some 100 milhon dollar In lost development costs. The system neve
worked wall enough. Meputedly users had worked wall enough. Roputedly users had to
walt much too long for the computer's respona and the system could not really competo with those offered olsewhere.

The failure and abandonmant of this pro-
is thus rosponible for IEM's presant non gram is thus rosponsible for IEM's present non
compeltive posillon to tma-bharing: cuatomers are now assured by 18M that other thinge are more important. IBM-haters thank their stars that this happened. Cynics think it concelvable that high-power time-sharing was dropped by
IBM in order to shoo fts customer base toward areas it controlled more completely.

Two other conspicuous IBM catastrophes have been specific computers: the 360 model 90 in the late sixtles, and a machino called the
STRETCH somewhat earller. Both of these STRETCH somewhat earlier. Both of these tomers. (Indeed, the STRETCH is said by some to have been one of the best machines evar.]
But they were discontuned by $18 M$ as not gufBut they were discontnued by IBM as not gulficiently profitable. Thereln is sald to have bean the "fallure." thowever, it has been al-
leged tn court cases that these ware "knockout" machines designed to clobber the competition at a planned loss.)
B. Negative views of tBM systems

In the technical realm, 18 M is widely unloved because many people think some or all of or far from what they should be. The reasong vary

Sone of the people feeling this way are IBM customers, and for a lime they had an organized sharing of programs). Recently, howeve
tated SHARE has become IBM-dominated, a sort of

The design of the 360 , whils widely ac cepted as a fact of life, is sharply critietzed
by many. (See "what's wrong with the 3607" p. 11.1

IBM's programs, while they are available or a broad variety of purposes, ara ofton notor ond sometimes tovetall ward and inefficlent. the less efficient a program is, the more money they make from it. A program that has to be run for an hour generales twice as much revenue than if it did its work in thirly minutes: a program that has to be run on a computar with. say times the revenue it would in two hundred thousand.

IBM programs are often thought to b rigid and restrictive.

The complex training and restriction that go with tBM programs seem to have
interesting functions. (S so box. "IBM's Control.")
C. Theories of IBM design

The quebion 1s. how could a company ike IBM create anything like the 360 (with its control program os (with its sprawling complications, not present in competiors' systems)? Thres answers are widely proposed: On Purpose (the conspiracy theory), By Accident (the
blunder theory), and That's how They're Soi blunder theory), and That's how They're Sel
Up the Management Science theory). These views are by no means mutually exclusive. The Management Sctence theory of IBM
design to the only one of these we need take up

The extensive use of group discussion and commitee decisions may tend to create awkward dosign compromises with a certain inuinaic amlessmess. rather than incisively distinct and chapter, "The Meating." $58-80$.

Thelr ube of immense teams to do big programming jobs. rather than highly motivated
and especially talentod groups, is widoly viewed as counterproductive. For instance. Barnet A Woiff, in a latter to Datamation (S
p. 13) says a particular program
remainz inelficient, probably because of IBM's unfortunate habit of using trainees fresh out of school wo write thotr

There may alvo be something in tha way that projecta are inituated and hald out from the rop down. yather than aequirting direction from
knowledgeable people at the tachnical leval, knowledgeable people at the tachnichl levol,
that creates e tendency toward perfunctortines and clunky structure.

Thus there may very well be no Intontion pollcy of unnectesary complication (woe Box.
"IBM's Control"). But the way in which goo "IBM's Control"). But the way in which gonit generate this unnecoseary completention.

THE CNTAJ INSIDE STORY
zemerkable book does not follow the dataila of tge 's computar designe
pollics in the computar age. 1.0 pince 19ss. Later work. perthap halped by nome Pentagon Paperuc, will have to relate the decietion procesess
that pecurred in thic unique nautonal
 produced and
on the world

Quickie history of JBM

IBM appeared in 1811 as the concolldation of a number of small companica
making Ught squipment. under the name making light oquipment. under the name Record). This was prophelle constdoring how apuly it described the com pany's future business, and espectially prophetle considering that today's stored-program computer was undreamed

According to Willimm Hodgers definitive company biagraphy Think.
the company's creator was a shrewd operator named Charles R. Flint. dashing entrepreneur and former gun
runner to tha South American repubict who in his shrewdness brought in to run the company an incredibly talented fire-breathing and self-righteous individuel named Thomas J, Watson. even though Watson at that dme was under at another well-known company. The sentence was never served, and Wsison wont on to preside for many years his unique stamp.

Watson arises from the pages of hard as natls yet reverently principled in his words; the pillar of fervid aggressive corporate piety.

IBM was totally watson' creation. The company became what totally obodient to his will and imple menting his forceful and inspiringly rationalized convictions with alacrity. As the Church is sald to be the bride of Christ, IBM styles of demandingress, pressure. efficiency and pietism which so cha acterized that man. But the ideas lowed from Watson alione, except for a few confidantes who received has nod. The company is vastly blgger muted sort of way: but it is sull the stiff and deadly earnest battalion of his dream.

Because of Watson's background as salesman. he made Salas the apex
of the corporation. The salesmen had the most prestige within the company and could meke the mosi money; below that was administration. below that. technical staff.

Watson eliminated the meat-shlicing machines, and pushed the product line based on punched cards developed by lam's first chiel engineer, Herman Hollerith. According to hodgers. was impotus from the Depression, and
the new bookkeeping requirements of the new bookkeeping requirements of
Hoosevelt's remedtes that skyrocketed the firm uniquely during the dopths of general economic catastrophe. ut Watson came to draw the highest salary of any man In the nation. In 1934 hls
Income was $\mathbf{3 3 6 4 , 4 3 2 \text { (will hogers. not }}$ Income was $\mathbf{5 3 6 4 , 4 3 2 \text { (Will Rogers. not }}$
the author of Think, was second with t324.314). Watsonk, had neatly arranged to got 5\% of IBM's net profit.

Thile 18 M particelpated in the ention of certain oarly computors. Eckert and Msuchly when they cume around after World War 13 tring to get arking for their ENIAC design. in ertain ways the first true electronic o Remington Rend. and the roaulting Univac was the flirst commerctal computer

However, IBM bounced back vary well. If there was one thing they hey brought out heir computers th was practlcally ciear saillog. Th Univac I was the firnt of many compucors to be delayed and boggled in the considerable sntback helped IBM get he lead very quickly; they have

In the early sixtles the IBN 7090

 the foading scientific computers of the country. But IBM in the late sixies almost relinquished the fields of very big computers and time-sharingto other companies, and their compuors are not regarded as innovanve Nevertheless, IBM's Syatems 380 and 370. despite varlous criticisms. have been very successfut; thousands of far more than all their round the glob computers all put together. This des pite the fact that some of these systeme have failed, including the big Model 91 an economic failure) and the TSS/36 me-sharing program, a technical

They have from time to time

 beon accused of unfair tactien, and various antitrust and other actione(set "Legal Milestones" box) have required IBM to change ris arrango required them to soll the camputers hat betore they had only rented nother decision. to "untundia ellf computers separately from their programs (previously "given" away with the conputers they ran on), is overnment action on the same patter. Showing characteristic inesse. IBM thereupon lowered the then alapped heavy asicapercaptibly, hen slapped heavy price-tage on the progra.
been freo.

Recent moves by the government have suggested an especially serious and far-reachlng anti-trust sumt against IBM. possibiy ono that might broak the
company up, with its separate divisions going various ways. However, in today's climate of cozy felatione boween business and governmont. It is hard to magine that such mattors would not be setuled to lBM's liking. ne 18M person has made to the author to wit. that maybe IBM wents to be broken tup. That might be one way of reducing the unwieldiness and interdependency of its product line: in ilized persannel base. (Another angle: Acting Attorney General Bork has expressed the view that IBM is ig only because its producto and anagement are wonderful. so the during the rump days of the Nixon incumbency.)

An interealing aupact of IBM publicity ia its sirest on statua Publietty photographe often ohow : eubordinate seexing edvice from a auparior. 18M ads appoel to the corporation preatidant
in ail of un- either Ooing ti Alone (aking a long walk over an Execuitve Decision) or noberiy directing a lower employes. In one extroordinary cate, we saw worshiplul convicta at the
foet of a Teacher implauaibly alluated in the corner of a priton yard.

Provinctal
There would nownt to be no quartion thet IBM people are comparauvely conarvative and
conventional. Tmie party jecruse that's who iBu hires though thay raportediy urfe tolarance of the unusuit employee in a trining film. "The wild Duck"). A huge number of iBM people nevar
worked for anybody else: obviounty this affecti the perispective, like alitying at one univaraty

It may also be that because IBM places ench a promlum on dapondability and obedience, now
ideess (and the abiltive needed to genarate them) naturally run into a litile trouble. Some critics fina onong IBM people a hesvy eoncern with conventional symbols of schievement, and funlor-
tunataly) seaing the world stuck all over with conventional labeis and Middla Amarican mareo typet.

Some of the moal amusing materiat on this camen from en odd source in writer nemed
Heywood Gould who, ell unproptred, became consulami to $18 M$. earned unconacionable mmounta af manay $(\$ 40.000$ in $81 \times$ monthr) and lived to
write a very funny and observant book about it (zeo Bliblog raphy).

But it is necessary on thene matters to aee
 ing a ring in your nose, a yarmulks or a halo: an entrupment in a ocial rote that makes the indi-
viduni's position awkward emong outslders. IBM idual's position awkward among outsiders. IBM
poople ofton have to take guff at parties, unless prople often hinve to take guff al parties, unless
they sre ISM piries. Delonsiveneas may account for wome of the Overda. and some of the clamishnen!

BRAINWASHED

hair own wrue that lam poople are essenthatly heir own world. One theory is that compart-
nemalization within the firm (rather visibie in hair designs) may tend to sulfe. Indeed, because BM prople can expect to be briefed and schooled in every tochnical matter they will need to know
or a given assignment, the incentive to follow ior a given assignment, the incentive to follow
lechnical developments through outside magarines and socielios may be roduced. Betwen Think
magesine snd corporate briofings, it is posibible magerine and corporate brifings. it is poisible
for IBM people to be comparatively (or sven com plotd. excapt as these now developments are presented to them within the organization. In his light it is easy to understand the ibmera' enie of cortalnty that thesr firm invented evory
ining and is at tho forefront.

Of courae many fine research efforts do go on hero, in considarsble awareness of what's happening elsowhere. Partucular individuals at IBM have done excellent research on everything from
computar htoden-line imaging to the structure of the genetic code and computer -synthessized holo-
grams. APL tiself (sen pp. 22- 3). as developed by Iverion at harvard and later programmed by
him at IBM. is another example of sophisticated ndividual creativity there. So nt's enturely possible. But iBM certainly has no monopoly on
underatianding or creatuvity, and tBM-hators underatanding or creatuvity. and tBM-hat
sometimes tulk an if the raverse is true.

is IBM's alluged misbehavior in pursuit
of nalos that has drawn some of the strongest
eritictam within the industry. as well as consid criticism within the industry. as well as consi
erabile litugation. Thelr "predatory pricing" (a term used by the judge in the recent Telex
decialon), and other mean practices, are (whe thes trun or falsel folklore within the induatry

These accusations are well summarized graphy). Basically the accusauons against IBM's ales practices are that they play dirty: If you, say, the computer manager in a businast
firm, want to buy equipment from another outfirm, want to buy equipment from another out-
fit, iBM (so the story goes) will go over your Tht, tBM (so the story goes) will go over your
head to your boas. accusg you of incompetence try to get you fired if you oppose them. snd
Heavan knows what else. Anonymous claims Heavon knows what else. Anonymous claims
that various forms of threat. Intimidation, "hardsolstare tactics" ald bohind the-scenes man-
tpulation" are actually stindard practice in lBM sales. he or she alleges various instances in certain municipalitites

Such behavior is etmphatically denied. though not in relation to that article, by Board
Chalrman Cary. In a recunt letter to Newswoek (bea Bibliography). Cary emphassies the importance of LBM's 76 -page uusiness Conduct Gudde
Ines. Whether these are publicly examinable is not statod.

These charges wore also taken up concretely in a recent survey of computing manager in "Monopoly is Not a Game:" see Bibliography). In Datamation's analystis of this aurvey, the managers did not seem to agree with these
charges against IBM. However, it must be charges against IBM. However, it must be
noted. the antire survey as analyzed-- that out of 1100 panelists to the questionnaire. Datamation only
considered 389 responses "uabable." partly it is considered 389 responses "uabble." partly tit is
stated) because many did not kive data ollowing stated) because many did not give data ollowing
themselves to be idenutioc. Considering the widespread fear of 18 m in tha field, this may
have strongly biased the poll in favor of tBM.

When we went from IBM to he difference begween night and day

Retired hardware executive.

(Incidentally, it is amusing to note that even In this remainting cornpany. in termes of (and surviving the weedout) ranked the top (and surviving the weedout) ranked the top
three companies as DEC. Burroughs and control
Data. iBM wai wort out of a Obviously Sata. 1 BM wat worst out of a . Obviously
eervice counts for a lot.)

An interesting viow on tBM's shes ethice was expressed recently by hyal F . Pappa,
president of Pertec Corp.
"In the past. whan there have been sales stialtions where 'you can't honox the
pollicy and win the deal.' 18M has violated the policy with the practice, he said."

However, he boliever that stituation is changing
under IBM's new management, so that the guideSees Several 18M Changes." Computorworld.
21 Nov 73. 29.).

The people who take these matters of IBM salee pracuces most seriouniy - IBM's compethComputer Industry Association. This is an assoEiation of computer companies, which has as
 sis theirs. Translation: they're out to get IBM.
President Dan L. McGurk, formerly of Xerox President Dan L. McGurk, formerly of Xerox
Data Systems, has blood in his eye. Member ship is open only to computer companies. but
heir newsietter On Line is avalable to indivkheir newsletter on Line is avaliable to indisy
duals (sue biblography). Anyone seriousty interested in these matters is roferred to them

3. technical decisions and designs

A. Prologus Part of the myth of IDM's corporate perfoc
don ts based on the notion that lechnical matters somehow predominate in ins's decisions, and
that 1 Bm 's product offerings and designs thus emerge naturally and necessarily and insvituably trom these consideratuons. This is rather tar
trom the truth rom the truth

IBM prosents many of their actions as tech nacal. even as technicaly breakthroughs. when nouncement of a naw computer, lor example.
such as the 350 or 370 . is uzually asde to such as the 360 or 370 . is usually made to
sound as if they have invented somethng special. while in fact they have simply made certan
decisions as to "which way they intend to go" docisions ay to which way they intend to go"
and tow they plan to market things in the next

IBM'S CONTROL
IBM controls the industry princlpalily by controlling tis customerr. Through various
mechaniams, it seams to entorce the principle mechanitums, it soams to entorce the principle
that "Once an 18 B customer. Alway on IBM customer." with en extraordinary degree of control. Aurely possessed in no other heield by
any other or ganizauion in the trae world. 11 dictatos what its cuatomers may buy, and wha
they may do with what they get. Mora than they may do with what they get. Morat than
this: the exactions of loyalty levinod upon IBM's customera are almilar, in kind and degren, to What it domende of the own employeat. IBM makes the custaner's omployets more and more
inke the own amployess. commutung them as individuale and offectively commitung the comnpany that buye from it, to IBM service in
perpetuity.

| Here are tome of the ways this symitem of |
| :--- | contro, esems to work. We are not saying here

that thas tis nocessarity how bim plant it: rather. Thene are the $\frac{\text { virtual mochanices. viriual }}{\text { in the old tense: thas }} 18$ how it might as well in the old tence: this is how it might as well
be working. In the antriopological tense this
is a tunctionsi" analyitis, enowing the ue-int rather than the actual detalled thought procente that occur. And even it thoese are really the
mechanaces. parhaps IBM doem't mesn them to D it might juit sombiow be a continuous accident.

```
Intarconnection and compatibilitien
iBN acts as if it doas not want compotitor
```



``` coeds to 18 to prevent the parazes of other
vehicleat than the own This is done nevernal ways. Firist, Ias pravant such intarconnecuons to tsa ayoteme. or at lacast nlappling on exira sarvice chargos remponatiba for overall periformanice of such petur. ellocuvely withorawing the hurdmare
juaranies that is much a stronge soliling point.
secondly. ibm down not tall all unat noed nections--- the detaile of the hardware interiacol
Inatily. IBM can amply decrea. perheps Imposellis. For inatanca. iBM beict for a ame that thatir tatone big program. "vs ar or wore uesd on the computar
```

Now. there are many manulacturers who
ink this is very wrong of igM: who betieve they should have the right to sell arcessories to plus onto IBM's computers. It has been generally possable for thesa other manufacturers to work these interconnections out awhile after
the computer comes out on the market. but the computer comes out
tr's getting mare difficult

Thus the Telex Deciston of Seplember 17 , in which it was decread by the judge tha 1973. in which it was decreed by the judge that IBM would have to supply complote interface informatuon promplyy when introducing a new computer. wat a source of great jubilation in the computer held. However. that part of the juigment has since been concelled.

 Much the same problem oxlsts in the software arge it is is less than interested in helping its compstitors write programs that hook up to IBM programs. so the detalls of program hookup ara not always made citar. Here. too.
many ammiler companites thast they should be many maniler
made to do it.

B Control and guldance of what the customer To a romarkable degree. If you are an
IBM cumtiomor, you pracucally hava to buy tBM cuntomer. you pracucally hava to buy wha
thay toll you. This tom manages by an intr-
 eupport ond contractual dealing. The IBM cus-
tomer always has severat optona; but these are like forcod cardi. Igm te alwaye introductng and ditcontinulng products. and changling prices
And contractual ar rangements and softwara op-
ilons in an olaborate choroogrophy, which applias Hons in an olaborate choroogrophy, which applioen
calculated prasituras on the cuatomer. IBM has - finaly tuned eyutem of cuatomer tncentivas by which it controls product phaning, to use the polte term, or planned obsolescenca, tat wome
people call it.
 quired to iwitch over to naw producte evary
five or six yours, rather than avery aven.
 world 21 Nov 73 29.3

Programs, espacially, Ate avallable with
cteront degrase of spproval from lem The

 programs. or unaupporited festurey of supportod

Avaltability of producta is in general a matter of exquisite degree. It's not so much
that you can or can't get a particular this that you can or can't got a particular thing.
but that the pricing and available contracts at a given time efxert strong pressure to put you
where they have chosen within their currently teatured product hine. Noreover. extremely strong nints are always avaliable: uhe asiesman
will tell you what model of tholr computers is Hikely to be adead end, or. on the other hand
what model is likely to offer various options what model is likely to offer various optlons

Some things are hall-avallabie, either as -RPQ" ${ }^{\text {tan IBM serm lor }}$ special orders--
Raqueat Price Quotation). or availabla to sophisticatod customers at IBM's discretion

$$
\begin{aligned}
& \text { With all the degreas of suallability, it is } \\
& \text { iy for laM the open or close by degreos }
\end{aligned}
$$ eusy for IBM to open or close by degrees

various avenues in which customera are intervatiod.

Also, difforent sizos of computer will or won't allow given programs or desirable program
features. Many IBM customera have to gat bigger computers than they woutd othorwise want be-
cause a given program- for instanco. A cobol bomplum for eliborate stiting scheme sxists for matching the machine to the customer \cdots or, A cynic might my
aseuring that you can't get the program fatures assuring that you can't got the program fanture larger computor than you wanted.

What it botis down to is that you. the customer, have fow genuine options, especiality
n your tirm ts alveady commatted to doing certain things with ocomputer. And whing las brings out a new computar. The prices and
othor influences are oxacungly calculatad to othor inturnces are oxacungly calculatad to
make mandatory the fump thay nave in mind to the new model.
(Thus planing of cuitomer tranzitions doered. for tnutanco. lgm hat in mind that com-

 of (BM.)
c. Having to do thinge juat their way.

IBM ayplems and programe ara set yp to
 ue aysuens end programe togother. Programe
and fetures which the casual observer would
 cost extre it is as thought the complatility of *quipment and prograta wate

Eflecivaly the IBM customer tends to be Trequently trapped in a cage of restrictuons. IBM or not One is reminded of the motto of T.H. White's anthill in The Once and Future King: that which is not forbidden is compulsomy.
 of debata.
b. Cuptive bureauctacies running in placa? Perhape the most unfortunate thing about
1BM (from an outsider's point of view) is that
effectively thoir syatems can only be usod by effectively their systems can only be ubed by
bureaucracies whom they have treined. From keypunch operator up to installation manager all aro elliectively enslaved to curlous compien thes that keep changing The ever-changing
structure of 05 , and us quaith sccers mathodis. structure of OS. and its quatint sccerss methods. outaide obsorver that LBA's game. intentional or not. It to keop things difficult and intricately
nuid to retain ufter control. In other mords. Huid to retain utter control. In other words.
it is as though they foutered i continual turnover of unnecessary complications to kesp a captive bureaucracy running to placr. Peopte who they have indoctininatad tand not to buy opponents'
computars. Poople who ars Immersed in the pecularitios of ItM eyatems, and buay keoping up with mandatoly ehanges. do not got uppity.
They are too buay. and the invostment of their uime and

Anti-bm cynicy say hat a ion or the work invoived in working with iBN computers
 prospects Those remarks should clanty the bloakness
of the prosperit for man'r future apone conputars

 Loi's ath mope. then. that these ininge
 is in many reapects the very model of a genarous and dutful corporate clitizan. In "commun-
ity ity ralations, "in donations to collegses and untversitien. In genarous release of the time of its it is aimont cortainly the moat pubite-ipirited corporation in Amertca. and perhaps on the
face of the earth.

They have bean generous about many public intarest projecte. Irom Brallie trannacrip-
vion to donaung photographora end lachlitez for lims on child developmeri.

The corporation sponsors worthwhile cultural events. "Don Quixote" with Rex Harrison
on TV was terrific. Kotherine Hopburn's "Glasa Meragerien was marvalou

They treat their mall auppliers honorably with great wollcitude.

IBM's enlightanmant and benevoience ooward its employees is perhaps beyond that of upgraded the position of women and ather minor lty employes: the opportualties for women may be greator there than anywhere else. They havo upgraded repair of their systens, at any level.
white-collar status, and 1001 kits ane disgit to white-collar status, and 1001 kits are disguised
as briefcases. This innovaton, making atapairas briefcases. This innovauon, making atapairest public-ralations and amployment policles evar instituted

They are opanhanded to employees who want to run for office, avidently regerdless of
platiorm. In the gix dates who worked for IIM. and evidently got time off for it. More recently. Fran Youngstein
an 18 M marketing ingtructor, was a 1973 candian lim marketing instructor, was a 1973 candi-
date for Mayor of New York on the ticket of the Free Libertarian Party. opposing all laws agalnst victumless crimes (e.g. prostitution and odd tex). as well as Day Care and welfare.

They also raraly fire people. Once you'ro in, and within certain broad outlines. it's extremely safe employment. For thase who turn
out not to fit in well. they have a tradition of certaln gentle pressure-practices like moving you around the country repeatedly at tam expense. This encourages leaving, but also exposes the less-wanted employee to a varioty of opportuniues he might not otherwise see. whthou trauma and anxiety of dismissal.

It is said that there are IBM firings. but thoy are rare and formidable. Heywood Could's
description of an IBM firing lCorporation Freak. description of an liBM firing (Corporation Freak
pp . $113-115$). for which he doas not claim aut pp. 113-115). (or which he does not claim
thenticity, is nevertheless bloodcurdiling.)

IBM's international manners in us 115 countres) are likewise praiseworthy. Compared oultinational corporations, they are swetines and light and highschool civics. Sensitive to the feelings of people abrond, they are said to operate carefully within arrangements made to satisfy each country. They train natonals for real corporate responsibility rather than bringing
in only outside peopla. And they are sonsitive to issues: for tnstance, they recently refused to set up an Apariheid computer in South Africa.
one thing is perfectly clear:
IGM has no monopoly on understanding or sophistication.

TOWARD IBM?
Among computar people. feelings toward ang only in part on whether you work there).

Many, many are of course emplayad by 9M. and the devotion with which they embrace world.

But the apiritual community of tBM extendi furthas. Uppor-management types, especially
Chairmen of Boards and comptrollers, seem to have a reverence for IBM that is not of this world. some amolgamated vialon which entwinet tmages of eternal atock and dividend growth Many others use and live with IBM's aquipment. and viow 1 BM as anything from the grantest company in the worla" to "a fact of life" or avan necessary ovil." in some places whole colanios of users mold thamsolves in its image, so
that around IBM computers there are many "1uluo BMz." full of peopio who umitare the personatilies and biyle of IBM people. (RCA, before tis computor operation fell to pleces. Imitaled not just the doesign of tBM's 360 computer. but
whole range of tites and depurtmental namat whole range of tuas and departmental namez
from dut of !BM. Tho sincerest form of flattory I

But outaide this pale-. beyond the spiriuat community of sBM-- there are quite a low boing concarned with thair own stuft. Somes
like !BM but happen to bo elsewhere. Cothert asalike or hate lim for a variety of reancone. business and wocial. And this smoldering. anybody's atutude toward Kodak or GM.

While it it not the intent hars to do any kind of an ant-tym number. It is nevarthaleat picture that is profected outaide the conputer
world. tin what followe there it no room to try to give a bellanced picture. Becaune IBM can apoak tor theolt, and doss wo with many voices. it more tmportant to indicete hare the kindo by eophisticared people oithin the industry so thet IEM-wor thipery will have some iden of wha bothere poople. But of course no atterpt can ant mitended al judge tusse masters. this it chizens.

1. SOCIAL ASPECTS OF IBM.

It is parhape in the social reatm, Including Its ideological character, that a lot of people
are turned off by ligm.

IBM has iraditionally been the paternalistic corporation. (Paternalistuc corporations were some kind of big philosophical issue to proople
in the fiftes. but nobody cares anymore. Anyway the rest were perhaps inconsequential compared to IBM. J Big iam towns not only have a Country Club (no booze), but thomestoad for the comfor of important corporate guests. There aro dress
codes (although non-whita shirts and below-thecollar hair are now atlowedt, and yos. codes of private behavior (now subdued). These mritate people with libertarian concorns. They do not bother employees. evidenuy. Decauso employ knew what they were getting into.

Gener alizations about IBM people obvious) cannot be vary strong. Obviously there is góing
to be immense variataon among 265,000 people. half of whorn have college degrees; but of cours one of the great truthe of sociology is that any non-randorm group has tendencies.

More than that in this case. In a way IBM poople are an ethnic group. Impressive indeed are the general onergy and singlemindedness IBM is Irue. good and right. and that the IBM way is the way. This righteousness is of course a big turn-aff for a lot of peoplo. Perhaps it poople, that thay ara brasnwashed or provincial

Major ibm computers tita giavce

HOW (SOME)
Computer companies ARE FINANCED -

A PERSPECTIVE

Those of us who were around will never forget the Days of Madness (1968-9). Computer stocks were booming, and their buyers didn't know what it was about; but everywhere there were financial people trying to back new computer companies, and everywhere the smart computer people who'd missed out on Getting Theirs were looking for a deal

Datamation for November 1969 was an inch thick, there were that many ads for computers and accessories.

At the Fell Joint Computer Conference that year in Las Vegas, I had to cover the highlights of the exhibits in a hurry, and it took me all afternoon, much of it practically at a trot. Then after closing time, I found out there had been a whole other building

It is important to look at how a lot of these companies were backed, the better to understand how irrationality bloomed in the system, and made the collapse of the speculative stocks in 1970 quite inevitable.

A number of companies were started at the initiative of people who knew what they were doing and had a clear idea, a new technique or grood marketing slant. These were in the minority, I fear.

More common were companies started at the initiative of somebody who wanted to start another terminal company, expecting the product somehow to be satisfactory when thrown together by hired help. Perhaps these people saw computer companies as something like gold mines, putting out a common product with interchangeable commodity value.

The deal, as some of these Wall St, hangers on would explain it, was most intriguing. Their idea was to create a computer company on low capital, "bring it public" (get clearance from the SEC to sell stock publicly), and then make a killing as the sheep bought it and the price went up. Then, if you could get a "track record" based on a few fast bales, the increasing price of your stock (these are the days of madness, remember) makes it possible to buy up other companies and become a conglomerate.

The joker is that if you missed out on all this you were much better off. Anyone with a genuine idea is being set up for two fleecings: the first big one, when they tell you your ideas skills and long-term indenture are worth 218 if you're lucky) compared to their immense conwhen you o publio and when you go public and the underwriter gets vast rakeoffs tor his incomparable services. What is most likely to get lost in all this is any original or atructured contribution to the world that the company was intended. in your mind, to
achieve.

In part this is because anyone with technical knowledge is apparently labelled Silly Technician in the financial community, or Impossible Dreamer; it is entrenched doctrine among many people there that the man with the original dea cannot be allowed to control the direction of the resulting company. In one case known to me, a man had a beautiful invention (not electronic) that could have deeply improved American industry. It was inexpensive, simple to manufacture, profoundly effective. He made his deal and the company was started, under his direction. But it was a trick. When the second instailment of financing came due (no the second round, mind you), the backers called for a new deal, and he was skewered. Result: no sales, no effect on the world, no nothing to speak of.

HOW COMPUTER STUFF
IS BOUGHT FIJ SOLD
For the most part, blg computiors have
awny been rented or teased. rather than aimme been rented or tessed, rather than
bought outright. There are varicus reasons
this. From the cuastomer's point of view. it makes the whole thing tax-deductible without amortixation problems, and means that it's poir-
sible to change pert of the package. the model sible to ehange per oressories-- more eantly.
of computer or the an
And big smounts of maney don't have to be And big smounts of
shelled out at once.

From the manutheturer's point of view land of course we are speaking mostly of TBM). It
advanisgeous to work the leasing gaine for ndvanisgrous to work he rcascins. Cash innow in gateady. The manufucturer is in continuous communication
with the cuatomer. and has mis ear for changea and improvements costing more. Competitors and improvements a disadvantage because the immense capital base noeded to get into the selling-and
leasing game makes competition impoasible.

Busically, Jessing really may be thought
having two parts: the sale of the computer and banking a loan on i_{i} essentially the lense payments are instiliment payments. and the real profits come sher the customer has efrectively
paid the real purchase prive and is still forking over.

Many firms other than lism prefer to sell their computers outright. Minicomputcrs are for those who believe in renting or leasing, the so- called "leasing tirms" nave appeared, effretivety performing * benking finction. Thry buy the computer, you rent or leass it from them.
and they make the money you would've saved if you'd bought.

IBM, now required to sell its compulers as well as lease them, keepa making changes in its syatema which cynics think are done partly to scare companies away from lensing. since
if you've bought the computer you can't catch up. (Large computers bought from comyanies that
tike to sell them. such as DEC and CDC. do not seem to have this problem.)

VH OH, MANTENONCE

 Trying to find people uho vilitix these things on a stable
banim it a qrest problen. to
You can aign a "mintenance contract" with the manufacturet,
onich is sort of 1 ke breakdoum inaurance: whatever happens

 have to be mainteined too.) | This 11 |
| :---: |
| cuperb. |

 Raytheon are into that.
the seven dwarves anil their friends

softuare
Computer prograns. or "sotware." used
me fre with the computer. But IBM turned to come frce with the computer. But IBM turned buy it separately. and there has been some foilowing of this exemple. However. for users who are buying a computer with some canned program
for a particular purpose, prices are obviously for a particular purpose, prices are obviously for the whole package: it's people who use the
same computer for a lot of different things that hove to pay for individual programs.

There are many smell software companies. For the cost of a fetterhead anyone can stzrt one
the question is whether he has anything spectial to sell. Sonie prople whomp up programs on their own which furn out tw be quite useful.
(For instance, one Benjamin Pitman offers a (Fior inslance, one Benjarin ititman offers a
magniticent progrem in Fortran to generate texmagnificent program in Fortran to generate tex-
tual garbage. It's so good it cso be used to expand proposals by hundreds of pages. He chlls it Simplified Integrated Modular Prose (Sime)
and th sells for $\$ 10$ His address is Cons and to sells for tio. His address is Computer
Center, University of Georgia, Athens GA 30602?)

Obviously. to ereate big systenis for intricate management puryoses requires a great deal more effert. Traditionilly these are done by vast pregrammer teants working in cobiol or
the like, constanty fighting with monitur programs the like, constantly fighting with monitor programs
and chewing up millions of dollert. However. the new Quickie Langiages three shown pp, H-2S)
may offer great simplification of such programming
task. tasks.

Programs are protected by copyright that's the only wey there cun by s soffware in
dustry at all-- but since there has becn no court litigation in the field, notody knows what the law really is or wht it covers. Everybody agrees that traditional copyright precedent covera a lot of ground-- "derivative works" definitely
violete copyright, even study guides to textbook violate copyright. even study guides to
\because but no one knows how far this goes. Same for patents. The Patent Office has
granted progremm patenis, notably the one on the sorting program of Applied Dette Research. linc., but The Patent Office has a profound dis
taste for this potential extension of its duties. and is telling everyone that programe arcn't patentable, even though they clearly fall within ita mandate as unique, original prccesses.

People who only resd the headlines thirk That the Supreme Court struck dowt the patent-
abilty of programs. No such thing.

In this light the patents that the University of Utah has goluen on the halfione image synthesis
programa of Warnock and Wylic and Ronney (sea p. are of consiciersble interest. These patents use the "software-as-hardwure" ruse the prograns, is described in detail as taking place in
a fictitious machine shown in many delailed draw a fictitious machine shown in many delailed dra
incs whose nebulous character is not reedily scen by the uninitiatedi events vaguely taking place in "miereprogrammeble mieroprocessors" have been neaty foisted on the Patent office as doctailed lechnical disclosure. It's a great game.
The idea is that the cloimg are so drumn as 10 cover not just the fictitious machine, but any program that should happen 10 work the sanie way. But such approiches. though common to previous. patent practic
fitikuted in this field.

 *

SURVIVAL OF THE FITTEST

One of the stranger projects of the sixties was a game played by the most illustrious programmers at a well-known place of research; the place cannot be named here, nor the true name of the project, because funds were obtained through sober channels, and those who approved were unaware of the true nature of the project, a game we shall call SURFIT ("SURvival of the FITtest".) Every day after lunch the guys would solemnly deliver their programs and see who won. It was a sort of analogy to biological evolution. The programs would attack each other, and the survivors would multiply until only one was left

It worked like this. Core memory was divided up into "pens," one for each programmer, plus an area for the monitor.

Each program, or "animal," could be loaded anywhere in its pen. The other programs knew the size of the pen but not where the animal was in it. Under supervision of the special monitor, the animals could by turns bite into the other pens, meaning that the contents of core at several consecutive locations in the other pen was brought back, and changed to zero in its original pen.

Your animal could then "digest"-- that is, analyze-the contents bitten. Then the other animal got his turn. If he was still alive-- that is, if the program could still function-- it could stay in play; otherwise the animal who had bitten it to death could multiply itself into the other pen.

The winner was the guy whose animal occupied all pens at the end of the run. If he won several times in a row he had to reveal how his program worked.

As the game went on, more and more sophistication was poured into the analytic routines, whereby the animal analyzed the program that was its victim: so the programmer could attack better next time. The programs got bigger and bigger.

Finally the game came to a close. A creature emerged who could not be beaten. The programmer had reinvented the germ. His winning creature was all teeth, with no diagnostic routines; and the first thing it did was multiply itself through the entirety of its own pen, assuring that no matter where it might just have been bitten, it would survive.

When word got around that this nude was in a public file on the time-sharing system, my office-mates scrambled to get printouts of her The cleverest, though, had a deck punched. As he predicted, she was thrown off by the systems people within an hour or so-- leaving the other guys with their printouts, but he had the deck. Now he can put her back in the computer any time, but they can't
\qquad

1．THE PHANTOM STRIKES

Computer
 Fon an ISCHIEF

All kinde of dumb jokes and cartoons circulate among the publle about computers．Then our friends regale us computeriok don＇t laugh they say we have no sense of humor．

On we do，we do．But what we laugh at is rather real structure of things．

Some of the best humor in the field is run in Datamation： an anthology called Faith．Hope and Parity reran a lot of their best pieces from the early bixties．Classic was the Kludge series．a romp describing various activities and distilled many of the more idiatic things that have been done in the field．＂Kludge，＂pronounced＂klooj．＂is a computerman＇s term for a ridiculous machine．）Datamation＇s humprous tradition has continued in a ponderous but extremely funny gerial that ran in＇ 72 called Also Sprach von Neumann， which in mellinuous and elliptical euphemisms described the author＇s adventures at the＂airship foundry＂and other confused companies that had him doing one preposterous thing with computere after another．

COMPUTER PRANKS

Pranks are an important branch of humor in the field． Here are some that will give you a sense of it．
ZAP THE 94
One of the meaner pranks was a program that ran orr the old 7094．It could fit on one card（in binary），and put the computer in an inescapable toop．Unfortunately
the usual＂STOP＂button was disabled by this program． so to atop the program one would eventually have to pull the big emergency button．This burnt out all the main registers．

times square lights

One of the weirder programs was the operator－waker upper somebody wrote for the 7094．It was a big program， and what it did was dISPLAY alphabetical messages ON THE CONSOLE LIGHTS．aliding past like the news in Times Square．You put in this program and followed it With the fnessage；the computer＇s console board would light blink in uninteresting paterns，Since the lights usually

This program was extremely complex Since the 94 displayed the contents of all main registers and trap． arithmetic and overflow lights，it was necessary to do very weird things in the program to turn these lights on and off at the right times．

THE TIME－WASTER
In one company．lor some reason，it was arranged hat large and long－running programs had priority over hort quick ones．Very well：someone wrote a counterattack program occuping eeveral boxet of punch cards，to which youded the shori program you really wanted run，and card apecifying how long you wanted the first part of the program to grind before your real one actually atarted

This would blink lights and spin tapes impressively and lengthen the run of your program to whatever you wanted． bombing the time－share

One of the classic bad－boy prank：is to bomb time－ haring eyalema－－that is，soul them up and bring them to halt．Many programmera have done this；one has told

Of course，it can damage other people＇e work（enpecially If diake are bombed）：and it alwaye gots the syatem program－ mera hopping mad，beceuve it moana you＇ve defled their Hare are e couple of examoles．

The way this story is told，one of the time－sharing systems at MIT would go down at completely mysterious times，with all of core and disk being wiped out，and
the lineprinter printing out
THE
PHANTOM STRIKES．

For a long time the gulity program could not be found．Finally it was discovered that the bomb was hidden in an old and venerable statistics program previously believed to be completely reliable．The Bomb part queried the system clock and made a pseudo random decision whether to bomb the system depending on the instantaneous selting of the clock．This is why it took so long to discover；the program usually bided its time and behaved properly．

Apparently this was the revenge of a disgruntled programmer，long since departed．Not only that，but his revenge was thorough：the Bomb part of the program was totally kniled into the rest of it，it was a very importand progention exited making it for prectical purposes impoesible to shance．

The final solution，so the story goes，was this whenever the rowdy program had to be run，the rest and had its fits in majestic solitude．

2．RHBOMB
The time－share at the Labs，never mind which Labs，kept going down．Mischief was suspected．Mis chief was verified：a program celled RHBOMB，sub－ mitted by a certain programmer with the initials R．H．， was responsible，and turned out always to be present when the terminals printed TSS HAS GONE DOWN．It was verified by the systems people that the program celled RHBOMB was in fact a Bomb program，with no other purpose than to take down the time－sharing system．

R．H．was spoken to sternly and it did not hap－ pen again．

However，some months later a snoopy systems programmer noted that a file called RHBOMB had been stored on disk．Rather than have R．H．scalped pre

He sat down at the terminal and typed in the com mand．PRINT RHBOMB．But before he could see its contents，the terminal typed instead
tSS has gone down
But this was incredible！A program so virulent that if you just tried to read its contents，without runnin it，it still bombed the system！The systems man rushed from the room to see what had gone wrong

He did so prematurely．The contents of the new file RHBOMB were simply
tSS has gone down
followed by thousands of null codes．Which were sil－ ently being fed to the Teletype， 10 per second，pre venting it from signalling that it was ready for the
next thing．

Gnlle

Games with computer programs are universally enjoyed in the computer community．Wherever there are graphic displays there is usually a veraion of the game Spacewar （see Steward Brand＇s Spacewar picce in Rolling Stone． mentoned elsewhere．）Spacewar，like many other computer－ based games，is played between peaple，using the computer as an antmated board which can work out the results of complex rules．

Some installations hava computer games you can play egatinat；you are effectively＂play ing against the house，＂
trydrg to outfox a program．This is rarely easy．A variety of techniques，hidden from you，can be used．

When＂a computer＂plays a game．actually somebody＇s program is carrying out stet of rules that the programmer han laid out in advance．The program has a nalural edge for the beat move（according to the criteria in the prooking

There in more complicated approseh：the compuler

 can be programmed to test for the bent etratagy in a game． This is much more complicated，and is ordinarlly contidered an example of＂artiflein
CONWHY＇S GIME OF LIFE

A Grand Fad among computertolk in the last couple of years has been the game of＂Life，＂invented by John Horton Conway．

The rufes appeared in the Scientific American in October 1970．In Martin Gardner＇s games column，and the whole country went wild．Gardner was swamped with results（many pubilished hi Feb．7）；arter a cocuple mor in ite own magazin．

The game is a strange model of evolution，natural selection，quantum mechanics or pretty much whatever else you want to see in it．Part of its initial fascination was that Conway didn＇t know its long－term outcomes，
held a contest（eventually won by a group from MIT）．

The rules are deceptively simple：suppose you have big checkerboard．Each cell has eight neighbors：the cells next to it up，down and diagonally

Time flows in the game by＂generations．＂The pattern on the board in each generation determines the pattern on the board in the next generation．The game part simply consists of trying out new patterns and seeing what things result in the generations after it．Each cell is either OCCUPIED or EMPTY．A cell becomes occupied（or＂is born＂）if exactly three of its neighbors were full in the previous generation A cell stays occupied if either two or three of its neighbors vere occupied in the previous generation．All other cells become empty（＂die＂）

These rules have the following general effect：patterns you make will change，repeat．grow．disappear in wild you make will change，repeat，grow，disappear in wild
combinations．Some patterns move across the screen in succeeding generations（＂gliders＂）．Other patterns pulsate strangely and eject gliders repetitively（glider guns）． Same patterns crash together in ways that produce moving glider guns．Weird．

While the game of Life，as you can see from the rules has nothing to do with computers intrinsically，obviously omputers are the only way to try out complex patterns in a reasonable length of time．

$$
\begin{aligned}
& \text { 吅 } \rightarrow \text { 㗊 ("Uock") }
\end{aligned}
$$

NON－OBVIOUS RESULTS OF SOME SIMPLE PATTERNS： orme die，one blinks back and forth，others become stable （Conway＇s Game of Life programmed for PLATO by Danny Sleator．）
bibliography
pongld D．Spencer．Game Playing with Computers （Spartan／hayden．\＄13．）This includes now charts，programs and what－have－you

A continuing series of game programs（mostly or all in BASIC）appe
mentioned earlter．

Stewart Brand＇s marvelous Spacewar plece，also mentioned earlier，is highly recommended

Robert C．Gamill，＂An exanination of Tic
11ke Gamen．＂proc．NCC $74,349-355$.
 Examines structure of simple gamas
30 tic－tac－toe of gubic）where forced wina are postibles and program atructures to play then．
The Gam of Life，＂tim， 21 Jan 74，66－7．
（Lifeline，eald to be publiched by Robert

Those adorable INFURIATING RESS:ST.RSS.

| Therir name makes people think they're a war protest group |
| :--- | but actually the R.E.S.I.S.T.O.R.S. of rrineton, N.J. nre a

bunch of kide who play with computers. They're all young; mon sure purked when they finimh high sehool. Their elubroum in at Princeton University, but the indiative is strictly theirs.

The name stands for "Radically Emphatic Students interested in Science, Technology and Other Rescarch Subjects." Computers are not all they do--they've also gotten into slot racing and the geme of Diplosacy-- but computers are what they're known for.
The Resistors (iel's apell it the short way) exhibil regularly at The Resistors (iel's apell it the short way) exhibit regularly at
the computer conferences, and have ntariled numerous people with the high quality of their work. They've been invited to var ind done graphiss; totely their tad is working with the LDS-1
in Prineton's Chemtary Department.

Where do they learn it all? They teach anch other, of cours and tease ench other. They also use the informal trade channols. subseribing to magazines and filling out information request
cards under such company names as Plebney International Signal cards under such company names as Plebney International Signal
Division and Excalibur Wax Fruit.

The great thing about these kids is their zany filpponcy. They've never tailed, they've never been afruid for their jobs. their forme of expression are as starting to professionals as they are to outsiders: don't say any hing ponderously if it can be sald playfully. Don't say "bit field" if you can say "funny bitss " don't say "alphanumeric buffer" if you can say "quick brown
fox box ${ }^{n}$ don't say "interrupt signal" if you can call it a "Hoy fox box; ${ }^{n}$ don't any "interrupl signal" if you can call it a "Hoy
Charlie; ${ }^{n}$ don't say "readdressing logic" if you can say ${ }^{\text {whoopet }}$ " ,

They have varied backgrounds. The father of one is n butche the father of another is one of the country's foremost intellectuals.

The trade press is umblvalent toward the Resistors. On the one hand they make good copy. (Al one Spring Joint they
had the only working time-sharing demo-- on a curpel next to a phone booth.) On the other. They sometimes seem bratty and publicity-hungry. like muny eclecuritics. (Al another Spring
Joint they dug up an IBM Songlook und screnuded the guys at the list pavilion, who hud to aet nies alseut it.) So they don't get written up in computor magazines so much anymore

Ifirst met the Resistors in $\mathbf{1 9 7 0}$. and started hanging around with them for two rensons. First. They are perfectly delightrul:
enthusisstic in the way that most adults foreco, und very witty To them computer talk was nol a thing npiart, its it is fire woth oul

Secondly. And this was the self-seeking nispect, I noted
ane kids were quite expert, and interested in giving me adviec where cumputer profossionals would not. They got interested in helping me with my (perhaps quixolic) Xanadutm project (seec
nip side). This way enough to keep me visiting for a couplo of years. Now, some people are too proud to ask ehildren for informa Hon, This is dumb. Information is where you find it.

The last I heurd. the Resistors were at work in a cosol. compiler or the Pas (to them) purchase of an IBM
from the disastrous (Since the school's intent was to teach business programining, they hoped that the availability of COUOL, would encourage the sehool to buy

The Resistors are few, but think they ure very importan in principle, un existence proor. They stow how silly and urtificial is our edifice of pedderogy, with ull iss sequences num sterilizulions, and how onybody cun leurn unything in the right atmosphere.
stripped of its pompositics. The Resistors are nol obsessed with siripped of its pompositics. The Resistors are nol ovselsed with
computers: their love of computers is purt of their love of everything
R.E.IIS.T.O.R.S. Ancedores.
lauren, i4, was taiking to another girl at the ACM 70 con -
crence. A passerby neard her explaining the differencer the languogea BASIC. FORTRAN, COBOL, ond TRAC. "How ang have you been programming"n he asked in surprise. "Oh, atmont month," she suld.

I was driving nome Resistors around Prineeton; they were elling contradielory driving instruetions. It demand triple reright right away." teatd a wimk,oman. "Hight up ahead you turn

 a free account on a national lime-sharing system. Thoukh incy
didn't have to pay. The yavem kept them informed on what they Would have owed. In a year or so they ran up funny-money bills
of several hundred thousand dollars.

Did they rate free subscriptions to computer magaxines: asked. Could they ciaim they really "make decisions affecting the purchase of computers"?
"Or eourse we wo!" was the reply. "All together: shall we buy a computer?"

Resibtors (in unison) "No:"

Their ariginul advisor, whom, we shall call Caston, is mis chievous in his own right. It was meeting-time at Goston's ploce
on a bright Saturday, and 1 was on the fown working on Xonder with Nat and Elliot when Gastion interrupted to say that an unwelcome salesman of burg lar alarms was about to arrive. "Let's have a linte fun with him, ${ }^{\text {a }}$, said Gaston. The kidds were to be introduced

The solesman may have realized he was woiklng into a trap oom. He got out his wores and slarted to demonstrate the burgur alorm, but it didn't go right. Peter, standing in front of the equip-
ment with a demonically vacuous grin, hay reversed a diocec behind the back so that the obarm rang continuously unless you broke the light bcam
"Numpt." sald Gaston, "you want to see a real securth system?n We trooped into the kitchen, where Greion kept a Teletype
rumning.

ANY NEWS? typed Gaston.
CREAN YELLOW BUICK PULLED INTO DRIVEWAY, replied the Teletype. JERSEY LICENSE PLATE . . . (and the sol Iesman John was typing this from the other Telclype in the bern.

The salesman ntared at the Teletype. He looked around
cherubic smiling faces. He looked at the Teclecype. "That at our cherubic smiling facess. He looked at the Telerype. "That's
all right," suid the salesman. "Uut now i'd like to show you a real securily system. . " And it was bsek to the old burgine

GUIDELINES FOR WRITERS AND SPOKESMEN

These sum

Examples.
This chastiply ins progren oveluzes.
 hat the hishest nerit according io these

 it iach intifect pius infonition in wher Othor trit incts were near tit.

 Sclentitic Adecrican.

 Cies Shis gil hass against the exclusivist tenden-

5. Questions to ask:

$$
\begin{aligned}
& \text { What are the premises of your pro- } \\
& \text { gram? }
\end{aligned}
$$

What if people turn out to need
something else?
What could go wrong?
And most important: What is that?
important distinctions

 drybu wan adid "on which the computer then
computior-inititorstece that your audionce is

that 11 hich not use suresy- enik, praticular

 en ontonologist than as a "corputer scientist.")
 senuit of the prsterts creater doe not sen

(There are systens, deser ibed on the filp

 suzzests the computer,
baby, pupy
or
deaon.

bible lography
Ernest Gowers. plain Mords.
This wonderful 1 ittie book shoved
ish civil servants "bureaucratic English civil servants "buresucratic
uriting. was totally innecessiry- Its
precepts-- mainty concorned with callin preppen a spade (seepp. 12)..
exactly to the computer world.

THE HEARTS AND MINDS OF CMPUTER PEOPLE

 tho computer people are aystery to others, ans somewhat fightening, somewhit heir hours so bizarre, their seen so peculian coaprehensible. Computer people may best be thought ofas new thnice proup, very much unto them.
seives. Now, it is very hard to characteriz selves. Now, it is very hard to characterize
ethic groups in words and certain to give
offense, but if 1 had to choose ome word for
 little people downaing the sushrooms, sk
terring around completely preccupijed with
unfathomable concerns and seemingly indif. unfathomable concerns and seemingly indif-
ferent to nomal humanity. In the moonilight
(i.e. prety late, with snacks around the (i.e., pretty late, with smacks aro
equipment) you aay hear our music.

Most importantly, the first rule in deal
with leprechauns applies ex hypothesi to coputer people: when one prowises to do you
amapical favor, keep your eyes fixed on him
until he has deiverod. or you fill get what $\frac{\text { until }}{\text { you }}$ her has $\frac{\text { delivered }}{\text { Programiers }}{ }^{\text {or promises are notor }}$ But the dippy glories of this world, the
earnestess and thimsy, are something else.
A real copputer fresk, if you ask him for a
progran to print calendars, will write a proprograt to print calendars, will write a pro-
gram that gives you Your choice of Gregorian,
Julian, old Russian and French Revolutionary, graman old Russian and French Revolutionary,
Julian, oither smal reference printouts or big
ineither In either small reference
ones you can write in.

Conputer people have many ordinary traits
and that show up in extraordinary ways-- loyalty,
pride, teqper, vengefulness and so on. They
have particular qualities, have particular qualities, as well, of dogged-
ness and constrained fantasy that enable them to produce in their work. Once at lunch 1
asked a tablefuli of programmers what plane figures they could get out of one cut through
a cube. 1 got about three times as many ans-
vers a cube. I got about three time
wers.as inought there were.)

Unfortunately there is no roon or time to go on about al these things-- see binlio. tasy and emot
ting things.

One comnon trait of our times.- the tech nique
non mong conputer people than others (see
"The Myth of ine Machine.. p. "Cybercrud," p. \$achine" perhaps a cerrain dis with fascination for (and envy of?) machines Anyway, many of us who have gotten along badi,
With people find here a realm of abstractions With people find here a realm of abstractions
to invent and choreograph, privately and with continuing control, A strange house for the
emotions, this. Like Hegel, who became most eloquent and ardent when he was lecturing at among conputer freaks boisterously expleining
the cross-tangled ramifications of some system (A syndrome to ponder. I have seen it soneone he cares about, cannot stop talking soaeone he cares rabout, cannot stop talking
about his deas for a project. A poignant
type of freudian displacement.) A sad aspect of this, incidentally, is by
no means obvious. This is that the same conputer folks who chatter eloquently about systoxs that
silent while someone else is expounding his own
fascinations. You wouldexpect that the person fascinations. You woilld expect that the person
with effulgent technical enthusiasms would really click with kindred spirits. In my exties and disagreenents boil out of nowhere to
cut the good mood. My only conclusion is that cut the good mood. My only conclusion is that
the same spit that originally drives us mut
tering into the clackwork feels treaten tering into the clackwork feels threatened mut
when others start monkering with what has bee When others start nonkeying with what has been
controlled and private fantasy.
This can be sumned up as follows: NOBODY
NNS TO HEAR ABOUT ANOTHER GUY'S SYSTEM. Here as olsowhere, things fuse to block human
comanicationi envy, disike of being dominated, refusal to relate emotionally, and what ever elge. Whatever computer people hear
about, fit scoms they immediately try to top.

Which is not to say that computer people are nere ciockwork lemons or Bettelheimian
robot-children. But the tendencies are there
bibliegraphy

vein. Systentic treatment in a related

Jway thow.

che or the natitiest peorle 1 have ever met

Anymay, st ehia sen instalisetion thare whs

Computer Putbowns
Practice saying tham loudly and firmly to
yoursolf, That way you won'tifecze
when they' re puiled on you.
THAT'S NOT HON YOU DD 1 T
THAT'S NOT HOH YOU USE COMPUTERS
THAT'S NOT WAT YOU DO WITH COMPUTERS
THAT'S NOT HPM IT'S DONE
THAT'S NOT PRACTICAL
HOO MUCH DO PRCU KNAL ABOUT COMPUTERS?
HITH YOUR BACKGROUND
YOU COULDN'T UNDERSTAND IT
EET'S CAAL IN SOMEONE WHO KNOWS THIS
TARPLICATION (genetaliy a shili)
T ISN'T DONE
(you know the answer to that one)
and the one Ive been waiting to hear,
IF GOD HAD INTENDED COMPUTERS TO BE USE THAT WAY, HE YOULD HAVE DESIGNED

Unforcunateiy there is no room here to assured that there is always a reply. The
brute-force brazen comeback,
equally dirty, brute-force brazen comeback, equally dirty,
is just to say something like didn't you see the last joint proceedings? OT YEABT WHAT ABOUT THE x MORK
OHING A ?
(where x is anyplace on the map on p. 5 .
and y is any current computer, such as a
PDP-10.)
 inhibited. cautious, restrained oefensive, methodical, and ritualiatic."

Ken Knowliten,
"Collaborations with artiats-in Nake 4 Rosenteld (eds.) $\frac{\text { Graphic } \frac{\text { Languages }}{\text { North-Holland Pub }}}{\text { (Co.). p. }} 399$
useful, and possibly embarrassing questions
If the Computer Priests start to pick on you. here are some helpful phisases that will give you strength.
I do not want to give the impression that the Cuardians of the Machine are always bad guys.
Nevertheless, sad to relate, they are not always good guys. Like everyone out to bolster his position including the plumber and the electrician, the computer Now, dhese people are often right. But if you have reason to question the way things are done-
whether yeu're whether you're a member of the same corporation, entided to straight answers that will help setie the maller honestly, without puldowns. Any honest man will agree. Now, here helpful questions. honestly an
may elcitit jong mysterious answers. Be patient and confident. Write down what's sand and sit down the answer. Then you can ask more questions. 1 am not Invitung the reader to make trouble nippantly, I am suggesting that many people have a right to know which hat not been exercised, and

HOW DOES IT WORK?
(This question may have to be backed up as follows: "There are no compuler systems
whose workings: cannot be clearly described insist that you Make a sincere attempt.") WHY DO YOU CLAIM IT HAS TO BE THIS WAY? SPEAK MORE SLOWLY. PLEASE.) could you explain that in terms of the data STRUCTURE?
WHO DESIGNED THIS DATA STRUCTURE? WHAT And THE ALCORITHM?
WHO IS THE PROGRAMMER
And can I talk to him?
WHY DO WE HAVE TO USE A CANNED PROCRAM FOR THIS?
Why is the input language so complicated? WhY DO WE NEED CARDS? WHY CANT PEOPLE TYPE N THEIR OWN INPUT?
mets hise have a simple-minded front end that WHY HAVE FORMS TO FILL OUT? WHY NOT HAVE
 why does it have to be that brand of comput WHY NOT GET A SYSTEM WITH LESS OVERHEAD?
WHY SHOULD ALL COMPUTER OPERATIONS BE WHY SHOULD ALL COMPUTER OPERATIONS BE CENTRALIZED? DON'I THEY GET IN EACH OTHER'S WAY WHY NOT PUT PART OF IT ON A DEDICATED MER WHY CAN'T WE DO THIS PARTICULAR THING ALL WHY CAN
ON A MIN:
WOULDN'T IT COST LESS IF WE GOT A MINICOMPUTER YOR THIS TASK?
WHY CAN T THIS BE PROCRAMmed IN SOME LANGUACE LIKE basic?
YOU KNOW AND I KNOW THAT COMPUTERS DON' TO DO IT THAT WAY?

1f these nuggantions reem unneceosarily contentiou
11 it because enne of these guya like to pick on peopla
and you may have w be reudy. And you may need
all the support you cen get, if, Asy, you make ased tand
like one of the se
we can'1 get in out." and if the prouram requirea the, chenge the program."

 Robert $\begin{gathered}\text { H. Jones iv. } \\ \text { a heavy pragre }\end{gathered}$

PPOGRTM NEGOTHTION

*I cant bear heat." remarked langwidere
the meetinc of the minos

The strange lenguage of computar prople mathos. mory wense then lay men nocessarily rosilize
tits a genornuized analytical way of looking at times spase end activity. Conalider the following
"there is insignificant buprbr space in THE FRONT HALL." (Bu
"before I Acknowledge your internupt, LET
me take this process to termination,"
"cooking is an abt of interienving and soin

HERE THEY COME - The

Microprocessors are what's happening
 Microprocessors cost several hurd.
that price tenge is failing fast.

 CWuhitevitits size) and a microprocessor (what-
ever its $s i z e)$.

A microprocessor is a two-level computer.

 (scow)

This has sone extraordinary ramifications.

 istininstructions, in tarn, wily be carried out by
program. This peans. for instance, that machines can
be
hisereated which may be programed directly in so

 Second, the machine costs less to make than an
ordinary computer The reason is that the archit-
Rect

There re exceptions, computers which have at
and
on d

tho levels, two speeds
The trick that makes this all work. whether
for the hidden- away type or the computer type of
microprocessor-- is that the lower level has a much

A last paint. One of the most important char-
 linemen

one in many sizes and speeds, to be tailored to
an application. You should know the differences
betwennat
row-- Res only Memory.
ram-

reatwrictess Memory. 1250 called

The lower-1eve 1 memory is sone ines called

prostans at both levels.)
hibllograpity
Raymond N. Holt and Manuel 1 R. Leman, "current Ne sign, Feb $74,05-73$.

SOME MICROPRDORAMMABLE COMPUTERS.*

Same Microprocessors to be bit into things.*

I have heard no computer more widely
pratsed smons computer people than the Bur-
roughs 5000 (replaced by the 5500). The 5000
 Bob Barton. It was designed to be used only
with higher $\frac{2 \text { anguges, not allowing progiant }}{\text { mers }}$ gecess io he binary instructions themseives. Inded, it was particularty designed
to bee used withatgot, which would have been
the stadard language if iBM had allove in the standard language if i BM had a alovedeen it
(seep. 3L) and is still the "international"
language.
 ters vere to be hidden from the programnet,
and aetention centered instead upon the stack,
a hightelevel programing device (see boo on
 Stacks), Hovever, index regist
to make it better for Fortran.

The 5000 was marketed as an "all-purpose" IGM's 360 of a few years later, Indeed, after
the 360 was announceit, Burroughs sales picked
 up, because $18 M$ salesmen were at alit.promotin
the concepts that custoners hadn't understood
when they hicard about them from Burroughs when they heard about
salesnen years before.
Bigger machines in the line are now the
$6500,0700 .$. .
The Burroughs Corporation continues to
e an acknowledred leader in computer design Apparently their sales force is something else
thitortunately. 1 once spent some time with unfortunately. 1 once spent some time with ${ }^{\text {and }}$
Burroughs salesman tho not only knew nothing
about the magnificent structure of the machine
 information uniess I demonstrated that the
company'I represented (a large corporation) company' I represented (a large corporation)
was seriously interested. He wore very fancy
clothes.

DEEPLY
INTERTWINGLED.

The Stack is a mechanism-- either built
into the computer ("hardware:") or incorporit-
tod in a progam ("sofdture") nto the computer ("hardware") or incorpora-
tod in a program ("software") which allows,
computer to keep (rack of a vast number of computer to keep irack of a vast number of
different ativities, interruptions and com-
plications at the same time ications at the same time.
Basically, it is a mechanisn which allows a program to throk something over its shoulder
in order to do semething else. then reach hack
over its shoulder to get over its shoulder to get back what it was
previously working on. But no matter how many
things it throws over. its shoulder. everything things it throws over its shoulder, everything
stays orderly and continues to work smoothly.
till it stays orderly and continues thes everything and finished
ther all.

It goos like this: if the program has to set aside one thing, it puts that ohe thing
in core memory at a place specified by a
number called astack
one to the stack pointer, ter. Then it adds
ready in case

When a program is ready to resume a prev
activity, it subtracts one from the stack pointertand fetches whatever that stack
pointer points to. This is called a pop

this trick mas he immense diately obvious, but we may stack any number of things together-: the addresses of programs, data we are moving
betwen programs, internediate results and
codes between programs, internediate results, and
codes that show what the computer was doing
previously. previously.
Using stacks, programs may use each other
very incely. It is possibte, for instance, programs among sily routines-- independent lititie programs- willy-nilly usin
track of where you've been.

In this case the stack holds the previous, programs follower can go back where it came
fromat the end of each subroutine.

STEK Sugpoutining

This even makes posith1: "ra-entrant" programs,
neaning subrouthes that can be used simul-
tancously by different programs without mixup taneous ly by different programs used sithoul-
and "recursive" programs, meanimg programix.
that manage that manage to programs, meaning programisup
themselves are in progress.

Stacks are also used for handing "interrupts" computer to ser aside one job for another
Having builtin hardware stack enables the
interrupts to pile

$$
\left[\begin{array}{l}
\square-r
\end{array}\right]
$$

Finaliy, stack arithnetic, like that done on ther algebraic types of activity) to be hanin core memoryy As asside resisters or space
ininded example
on a hypothetical machine. suppose we wanred to hanpothetical machine, suppose we wanted
$2+7 \times 3$
On this machine, let's say, this gets compiled
to a program and a stack:

Then the operations are carried out on the
stack itself:
國事"…

Stack programing tends to be efficient
particularly in its use of core menory.
$\begin{aligned} & \text { Some languages, such as } \mathrm{A} \text { gol and TRAC } \\ & \text { Language, require stacks. }\end{aligned}$
Some computer companies, such as $I B M$,
resolurely ignore stack architecture, though
hardware stacks have become widely adoped
in the field.

me GRHDDUS

In electronics, a "bus" is a common onnector that supplies power or signals to
and from several destinations. in computers "bus" is a colton connection among severa
points, using carrying a complex paralici polints.
signal.

The Grand lus, a new idea among computers
satching on. (The term is used here bee is catching on. (The term, is used here be-
inuse the colloquial terim, "Unibus," is a bic
tridemark.) Basically the Grand bus is a connector of multiple wires that goes among severkl
pieces of equipent. So far that's jusi a
bus. Rut G Grand Bus is one that allows the bus Rut "Grand Bus is one that allows the
difforent pieces of equipment to be changed
and replaced easily Gecause signals to any
comeon piece of equipent just

This aesns that the interface problem
is deeply simplified, because any device with proper buspinterface can simply be plugged
onto the bus. It does mean a lot more complexity of
signals. The fnibus. for example. has abour
fifty parsilet strands. Aut that neans varlous tricky electrictid dialogues can rapidi give inntruetions to devices and consider re.
pilies about their status, in quick and stan-
dardized

Prosinent grand buses include:
The Nove bus (namelens; the first?)
PDP-11's Unitus
Lockheed SUE': Infibus
ppp-8': Omilbus.
The iden ts great in general, For your
chicecture would simplify everything.
Not only that, but Detroit is supposedy
Ging to ppot your car's olectrical systen on
 new goodios susily.

41 patiol
the 11's magic moses

GREAT COMPUTERS
Here, then, are some thumbnail descrip-
ions of some great, classic or popular com-
ions of some great, classic or popular com-
putters, expanding our basic diagrams as needed.
Individual computers represent variations
of the patterns shown so far.
The particular structure of registers, memories and pathways among them is called the
architecture of a computer (see p. U2). The architecture of a computer (see p, UZ per are called the instruction-set of the particular computer (see p, ${ }^{\text {architecture" is often used to cover both, }}$ including the instruction-set as well.)

The principal variations among computers are the word length (in bits-- see "binary mint of main registers. Then come the detail of the instruction-set, especially the ways
in which items are selected from core memory - the addressing structure. Then the instruct tion-set, whose complication
can be considerable indeed.

The individual computer is the complex
t of all of these. If they fit together result of all of these. If they fit together
ether poorly, it is a bad design. A bad de-
sign is usually not so much a matter of overt sign is usually not so much a matter of overt together disappointingly. (Glitch is a term
often used for such stinky features or velationships.)

The possible ways of organizing computing hardware are vast, and only partly explored,
(An aside to computer guys: on the Intel chip debugging consoles they have an address trap
(trapping on a preset table effective address) and a pass counter (trapping after n pastes).
How come we haven't seen these sooner?)

The machines mentioned here are an arbtray selection. Some of them are the Great their numbers as proper nouns, with no brand
"Do you have a 360 up there?"
"No, but there's a 6600 , a 10 and a "Personally, Id rather work on a 5500 ." Here is what they are talking about.

The PDP-8 was designed by Gordon Bell (in its original version, the PDP-5) about
1960. Originally it cost about $\$ 25,000$; as of May 1974 that price ia down to about $\$ 3000$,
or loss than a thousand dollars if you or boas than thousand dollars if you want
to buy the circuits and wire it all up your-
elf. Yup, here comes that Heathikit. cole, hero comer that Hoathicit.
Tou'Il find thea in induatris Dot teat seller; You'll find them in induatrisi plants and
monera, or avon hidden in the woirdest equipmont, from typesetting devices to bile di ak
drives. At univeraition all over there ara ide who know them inside out.
Today the PDP-8 moms archaic, with its
one accumulator and awkward addroseing achene You can only got to 256 different addresses in
core memory directly, and it's chopped up into pages. But for it: time it was a brilliant day there are people parachute, and oven ta-
look at what Boll's done lately it. (But So many programs exist for tho PDP-8, it will be with un for the foreseasblo future. Than the "Bucky'n Wristwatch" example (seep. that a PDP~8 on one or two wriatwatch-aized
chip ia only a year or so away. But lota hope they do the 11 first.
(Lookalikes available from Digital Computer
Control and Fabri-Tak.)

DEC's PDP-10 is in some ways the standard scientific
computer that the IBM 7094 was in the sixties.
The PDP-10 is excellent for making highly interactive systems, since it can respond to every input character
typed by the user.

It is a favorite big computer among research people
and the well-informed. The ARPANET, which connects big computers at some of the hot ARPANET, which connects big
is largely built with PDP-10s. There are establishments, U. of Utah, Stanford, Yale, Princeton and Engelbart's shop
(see p. tm y $)$. The Watkins Box (see Pat (see p. 4 46). The Watkins Box (see p. M 33) hooks to a 10 . trademark "pDq" connotes minicomputers to the uninformed, now wants the 10 to be called DECsystem-10 rather than PDP.
We'll see if that catches on.

Who designed it is not entirely clear. I've heard people attribute it variously to the Model Railroading Club
at MIT, to Gordon bell, and one Alan Kotok. Originally it was the PbP-6, which appeared about 1964 , and was the first computer to be supplied with a time-sharing
system, which worked from the beginning, if cockily. Now
it st good and solid. it sigood and solid. DEC's operating system for it (see p.
45) is called TOPS, but B BN sells one called TENEX, also highly regarded. The 10 does time-sharing, real-time programming and batch processing simultaneously, swapping to
changeable areas of core memory. (This feature should soon
be available, at last, be available, at last, on IBM computers ("vS2-2").)

PDF- 10 rime-sharing works even if you don't have a disk,
DEC tape (DEC's cute little tapes) . of course, without using DEC tape (DEC's cute little tapes). Of course, without
disk it's really hobbling, but this capacity is nevertheless noteworthy.

The PDP-10 has debugging commands which work under timesharing and with all languages, and hugely simplify program-
ming.

Unlike the IBM 360, whose hardware protection comes in options, the 10 has seven levels of protection: the user can
specify who may read his files, run them, change then, and do four other things. The PDP-10 does have job control commands,
but they are not even comparable in cumberosity to IBM's JCL Language (see p. 31), and they are the same for all three
modes of operation: time-sharing, real-time and batch. 16 Gera Reputes (ir out a were Regin)
 chines ten years ago, you now hear of them being offered free to anyone who ill cart of power, airconditioning and os on. But they wore groat number crunchers. (If you
want 90 , I believe that 90 lookalikes are still available from Standard Machines ir
California.)

Univac's 1106 and 1108 are East, highly regarded machines, In designing the computer
Univac did a clever thing: they built an upgraded 7094 . This meant (as I understand it)
that all the programs from the old 7094 will run on it. But instead of two main registers dion where they found the bits in the instruclion word to select among all those registers
I cant tell you.)

The 1108 is a larger version, with twice
many main registers.

The PDP-10 has 36 bits but has instructions to operate on chunks, or bytes, of any length. It has sixteen main reg
inters, as does the 360 , but uses then more efficiently.

The PDP-10 also has unlimited indirect addressing: an instruction can ane turn say to take its effective address
cation, which can in turn
elsewhere, ad infinitum. For your heavy tight elegant stuff.

Perhaps most important, the 10 has a full set of stack instructions to use multiple stacks for purposes of the it own. (The operating system's own stacks are protected.) Program-
mems do not have to save each other's registers, as on the 360 . programmers are relatively safe from each other.

 PDP-10s are ordinarily sold where the views of scientists and engineers are considered important, and comptrollers do
not have first choice. Nevertheless, some say that its busness monogramming facilities (ie. © Cobol, duh y are just as good
as those of companies who claim to have designed computers for all purposes. ${ }^{\text {a }}$ first National City Bank of New York has found use, profitable at an internal charge of $\$ 3.75$ an hour plus processing charges. Prices for a PDP-10 system with disk start
startabout $\$ 500,000$, or $\$ 15$ grand a month, and go up into the
millions. However, DEC salesmen are not like IBM's, who can reputedly sell Eskimos to iceboxes. For one thing, DEC salesmen are
on salary. That fits DEC's demure, aw -shucks image, but it doesn't exactly sell big computers.

wBIGGIE

The operator muses at the console of the main computer at the University of Illinois at Chicago Circle. It is an IBM 370 model 158 , which rents for about $\$ 50,000$ a month, including all accessories and a dozen or so terminals -- in the parlance of big-computer people, a "medium-sized installation."

This is a big computer.

In principle it's no different from a small one; but it has bigger memories, more registers, more program followers. There are more specialized parts and more things happening at once. (Thus the term "digital computer complex" is sometimes used for a big computer.) It comes supplied with a monitor program or operating system (see p. 45) and a variety of other utility programs and language processors.

Biggies have many ominous and seemingly incomprehensible things to scare the layman.

For one thing, where is the computer? A11 you see is a lot of roaring cabinets. Which is it?

Answer: all of them. "The computer" is divided among the different cabinets (note diagram and clustcr of pictures locating the operator among them, below). The external devices or peripherals (see p. 57) are usually in separate nousings. Usually there is one single box or "mainframe" containing core memory, main registers, program-following circuitry, etc., as in the mamain registers, program-following circuitry, etc, as in the maand sometimes aren't.

Operator's console of this particular setup. The operator may use the keyboard or light-pen (see p. liMñ) to select among waiting programs, submitted by various submitted by various
programmers and departprogra
ments.
(8) Wattymy prol.

The parts of a computer are set up to be gotten at, to be refilled and repaired. Their innards swing open like refrigerators. Similarly, the wiring of computers is in separate sections or modules ("module" merely being today's stylish term for "unit") having very orderly connections among them. Individual circuits are on circuit sheets or "cards" which plug in sideways and may be replaced easily. sideways and may be replaced easily.
There's nothing really computerish There's nothing really computerish struction; but it is traditional in other fields to build something as a tangle of wires. (When TV makers follow these rational practices, they call it "space age construction."

Why are the different parts so far apart? So there's room to swing them open, refill or change them, sit down and repair them. Refrigerators could, and perhaps should, also be built in separate sections, but it's not traditional. Automobiles can't be spread out because they have to endure the jostles of the road. But computers like this baby aren't going anywhere.

Also intimidating is the fact that you have to step up as you enter a computer room. That's because computer rooms ordinarily have raised floors, permitting cables to be run around among the pieces of equipment without your tripping.

Computer rooms are generally it by millions of fluorescent bulbs, making them garishly bright. This is simply tradition.

Big computers can have millions of words of core memory. Moreover, there are usually several disk drives and tape drives, as seen in the pictures, used to hold data and programs. (Some of the programs are the system programs, especially the language processors and the operating system-see p. 45-- but other programs and most of the data belong to the users.)

AN OPERATOR IS NOT A PROGRAMMER
Cindy Woelfer is the day-shift operator of Circle's big computer. The job mainly consists of changing disks and tapes, starting and stopping different jobs listed on the scope, and restarting the computer when the aystem crashes (gratuitously ceases operation).

Ms. Woelfer, a thoughtful person, says she does not find her job very stimulating. She can program, but the job doesn't involve programing. It's also a lonely job. Non-systems people, except Mayor Daley, aren't ordinaxily allowed around. About the only people to talk to are the systems programers who stop through to look at the scope and see whether their programs are up next.

DINKIES: an overview

There is great confusion as between various types of small computer, with the latest stupid term, "microcomputer," adding to the confusion. We have:
minicomputer or mini
Traditionally, any computer hav-
ing an architecture (memory and
main registers) of 18 bits or
less. Lately, unfortunately,
some people have been adver-
tising their 24 -bit and even
32-bit computers as minis. This is just confusing.
(They base this on the fact that "minicomputer" has also referred to a machine sold without a lot of programs. But that's
really a separate issue.)
Two-level computer (see p. 44).
microcomputer
crumay term apparently being used to mean any tiny computer, regardless of its structure. Thus all
computers will be "microcomputers"
in a few years. This clarifies
nothing as to their structure or use.
midi computer
Remember midi skirts? Well, this term has been used for computers larger than 16 bits or faster than usual, by people seeking to give
the impression that their machines
the impression that their machines
biggies. Even the PDP-10 (a genuwine
biggies. Even the PDP-10 (a genuw
biggie) has sometimes been called
biggie)
a midi.

A product called Cling Free
-- comes scented in a spray can, for preventing static in your Ieundry-- is said to eliminate static electricity in carpeted computer rooms. Spray it all over the rug, especially near the computer, and you won't zapp the computer with sparks from your fingers.

WHERE TO GET 'EM

HEY, SOME MINI RENTALS MAY BE REASONABLE
Nova minicomputers are leasable from:
Rental Electronics, Inc.
(a subsidiary of Pepsico)
99 Hartwell Ave.
Lexington, MA 02173
for as little as $\$ 250 / \mathrm{mo}$. . long-term.

A long but incomplete list of minicomputer manufacturers is at the bottom of p. 43,

THE FUN OF DEBUGGING ON A MINI with just your usual Teletype and paper tape reador and punch. After t bombs:

He MINI

This is a PDP-11, one of the world's best-designed minicomputers (see p. 42, The PDP-11 is a 16-bit machine. Shown is Model 45, the fastest PDP-11, which has various special features. Stripped, with $4 K$ of core memory (that's 4096 locations), it costs about $\$ 13$ grand. A smaller PDP-11 goes for some $\$ 5000$.

A minicomputer simply means a small computer, no different in principle from the big ones (see next spread), and it can do all the same things except as limited by speed and memory capacity.
(Mind, we are talking about real computers, not the Iittle calculators you hold in your hand that just do arithmetic. A real computer is one which works on stored programs and all kinds of data, working not merely on numbers but on such other things as text, music and pictures if supplied with appropriate programs; see flip side.)

There is some argument over what constitutes a minicomputer; basically we will say it's any computer with a word length of. 18 bits or less (see "Binary Patterns," p. 27). (Some companies, like Datacraft and Interdata, are trying to peddle their worthy computers as minicomputers" even though they're 24 and 32 bits, respectively, but that's very odd. Interdata says any computer under ten thousand is a mini-- which means all computers will be minis by and by; a vexing thing to do to the term.)

Traditionally minicomputers come with much less. In the old days pretty much all the programs you got with it were an assembler (see p. 35) and a debugger (see p. 30) and a Fortran compiler (see p. (31) if you were lucky. Today, though, with minis having highly built-up software like (see pp. Yo ℓ ? for descriptions) the PDP-8, the PDP-11 and the Nova, you can get lot of different assemblers, together with Fortran, BASIC, and a gither with Fortran, BASIC, and a system (see 45) to make roung life a little easier.

The idea of owning a computer
seem strange to some people, may seem strange to some people,
but with prices falling as they ar it makes perfect sense. Numerous individuals own minis, and as the price continues to drop the number will shoot up. For several families with children to pool together and buy one for the kids makes a lot of sense. One friend of mine has an 8 , another is contemplating an 11 . (I've been trying to get my own for years; perhaps this book...) Anyhow, the general price range is now $\$ 3000$ to $\$ 6000$ plus accessories and that's dropping fast. Rental is usually a great mistake: prices are very high and after six months or so you'li have paid for it without owning it. (But names of rental places will be found in this book, places will be found in this book,
and some of them may offer good arand some of them may offer good ar-
rangements.) Minis may now be had in quantity for $\$ 1000$ each-- price of the PDP-8A in May $1974=-$ and soon that will be the consumer price.

Unfortunately, the price of the computer itself is dropping faster than that of the accessories, such as the basic terminal you'll need, which still weighs in at $\$ 1000-5000$. Moreover, as soon as you want to do anything serious you'll need a disk (starting around \$4500) or at least a cassette memory (starting around $\$ 1500$). But these prices too will come way down as the consumer market opens.

Some of us minicomputer freaks see little real need for big computers. Minicomputers are splendid for interactive and "good-guy" systems (see p. 13); as personal machines, to han die typing and bookkeeping. even for business business systems, if you recognize
the value of working out your own in BASIC or, say, TRAC Language.

Minicomputers are being put inside all manner of other equipment to handle complex control. (However for repetitive simple tasks, the lat est thing is microprocessors (see p. 44), which cost less but are harder to program.)

Minicomputers are now being found in highschools; active marketing to highschools is now being done by both DEC and Hewlett-Packard.

Children's museums in Brooklyn and Boston have recently obtained PDP. $11 s$ for the kids to interact with. In the Brooklyn case, the computer will even demonstrate the exhibit and help the child discover things about it, in ways worked out by Gordon Pask (see p. IM. 13).

In the future, networks of minis may be the systems to offer low-cost information services to the home (for speculations, see p. DM 57).
But minis will also start to make bigger and bigger incursions on the territory of the big machines. For instance, one group proposes a time-sharing system which will simply consist of Novas interconnected in a ring, the so-called STAR-RING, which will supposedly compete with big time-sharing.

Here's that selfsame $P D E^{\prime}-11$ in its overall setting. With peripherats shown, plus the magnificent Veator General display (shown later on in book, $p{ }^{\text {M SI } \& ~ e l s e w h e r e), ~}$ this setup cost well over a hundred grand. (This is the Circle Graphics Habitat, otherwise known as the Chemistry Department Computer, U. Illinois at Chicago Circle. Why do chemists need such things? See p. SM31.)

The good of' PDP-8, perhaps the most popular minicomputer (12 bits). Full PDP-8s now cost about \$3000, "kits" less. Shown here with a Sykes cassette tape deck-- a nice, rather reliable wnit-- and a screen display (see pporz2-3) Courtesy Princeton University \& R.E.S.I.S.T.O.R.S. (see p.47).

kids love computers. They belong together. This lad flips panel awitches on a Nova, perhaps the third most popular mini after the 8 and 11 (16 bits; see p. 41).

Ten minutes after starting to program in Machine Langua
by Language.
th's a pain trying to get all the ones and
and
t's a pain trying to keep track of binary numbers for where things are stored.

SO: let's glve them alphabetical names.
That's Assembiy language. (And the conversion program we put our alphnbeticals into, to turr them bsek into the binary patterns that really
run the machine-- that conversion program is run the machine-- that
called the Assembier.)

An assembior is a direct and non-tricky translator, intended muinly to handle the details
of exact transposition between instruction codeof exact transposition between instruction codetanguage program that you intend.

IT WORKS LIKE THIS: The assembler scans through the assembly language program. After tinding the key punctuation marks or delimiters (shown as comme and slash for the FIDO assembler), it scans for the alphabetical instruction mnemonics, and translates them by
a table in core memory into the corresponding A table in core memory into the corresponding
binary codes. at ignores everything on a line
after a slast which is lucky, since in the comments you may use words which are the sam as inatruction mnemonics.)

The assembler also counts the instructiona, and (atarting wherever you say) figures where
in core memory the instructions (and any deta or spaces you put in) go. Then it makes a lust of these addresses, called a symbol table (ale
called a name lisa at fess elegant places). called a name ligat at hess elegart places i. An assembler is the simplest forn of an
compiler (see p. Jo). Basically it ranslates en

Then from this symbol table it fils the
wing binary addresses into the binary con mande of the program.

Aren't you glad you don't have to:
Generally the sasembler then sends out the binary program to some external device. such as a digk memory or paper tope punch.
Then it can be put into core memory when you Then it can be put into core memory when you
want to run th.
(You can put a program into core mamory one bit at ot time through the tront-panol envichas:
but nobody likes doing this excopt for teeny probut nobody likes doing the excopt for teeny pro(Note: an astembler for one compuler (asy the PDP-8) thal runt on a diferenasembler.)

* SUCKY's WPISTWATCH太

There is a certain folk hero whom the people all call Bucky. It is wafd that he wears three wrintwatches: one for where he lo now
one for where he will be next, and one that tolle what time it is at his home.

Well now. Here's an example of a little problem on which to try our FIDO computer.

Let's wire up a magic wristwatch for Bucky the Foik Hero, one that will use a teeny
FTDO on chip (the coming thing), attached to three rows of numerical readouts aike those on pocket calculatars).

This application is not so absurd sa you might think.

It is obviously quite simple in principle.
It will let us aee some of the way: that the rock-bottom machine languages of computert are used.

ABOUT THIS COONDERFUL proopty.

Naturally this got saved for last, and
What is presented here shows it.
The example was meant to be a case of not-very-numericel programming that would thow the abatractness of it all. The program seil has no intrinsic quality related to the problem: that much should be visible.

Anyhow, I programmed this myself a few weeks ago in the FiDo language, and was very of appalling bugs. As time closed in on this project 1 asked my friend Mike O'Brien to code he program, and he kindly consented, taking ime out of his previous weekend plans. Here is Mike's program, for which 1 am grateful

HowEVer, ater it was set in type, Mike realized that it too has some gross haws and would not work as here presented. We though ? having a chocolate chip cookie contest for entrants Kxing it out chocolate chip cove such - computer and we wouldn't run the program if we had one anyway. so see if you can get the basicidea of it. and if you are a real rise guy fix the program for your own satisfaction, and that will be that

The basic idea is that we have a FIDO, reaumably on a single integrated circuit chip thached to thirteen external devices (or periph or whatever). These devices sre a timer or clock. which reaches zero once per minutethis ia a computer clock. meaning a timer, not something that people can read-- and the three nowa of numerical readouts that are the desired Superwatch.

For aimplicity's sake we assume here that each numeral is interfaced to do either input or uiput; thus the FIDO computer can ask any givent
tent

The finished Wristwatch is going to give ime on twentyfour-hour basis. not twelve, like at NASA and suchlike places. Atter $12: 59$ comes
13:00. After $23: 59$ comes $01: 00$.

The bulk of the program is oceupled with eating the numerala and changing them. How aver, in proportions of activity, the poor thing it poing to apend most of tit time asying, "is it time yet? is it time yet? Is it time yet?

Bectube the FIDO selects the particuler input-outpul device with the last seven bite of an input or output instruction, this has been done with "addres" modification" arithmetic: creating an output instruction to addreas a par
dicular device by adding the tinal neular device by adding the intruction to the honorable progremming trick

In evveral cases. the program choonest a device to examine, or hill, by taking a biank input or output instruction (kept at locations
\times oxo xox and x oxo xxo. reapectlver adde it, in the AC, to a counting number) and 10 being used to atep around in the array of numeralt. (This counting number is "N." stored in location x oxo XXX.) (Thete insiruc tlone ware put into the slote in octal form. as orp mesent to distingution tectively. The eleshes are moent to distinguish weroes from Ohs. The That the aseanbler is suppoeed to tranulate thene numbart to Blinary, taking thom three bitt at a tume: © B omes out to xxo 000000000 .) ust adds one to each-- a part of the progra called ADMIN. starting at xxo oxo. If it's nine, however, it sets the final digits all to ero, and then tests the tens digit to see if it's five, meaning the end of an hour. The number five hat been tngenuously stored in a loca
tion which Mike has called FIVE, which assembled to slot number X oxo OxO. If you look there, you will see that the slot does, indeed. contain the binary pattern for the number 5 .)

What a pity there is no time to take you on a guided tour of this profound. magnificent proram if you dig this sort of thing, however you might just be able to dope it out.

Anyway. you've had your taste. Hope you
Lort Ldegts
on ${ }^{2} / \mathrm{J}$ watches
the same
chect the
Ist wateh
4 在 R2T 10
for all 3
unless 1
1 new hour.

A WND-UP
CROSSWORD PUZZLE

 tent \& fietitiove meehne.

THE
 FIDO

(Fathful Inatrument. Domenticated and Obliging)
The Fino it a twelve bll machine. The
sadin rogiter ot hae only one) to twalve bith
jong, and every memory alot in tweive bita long
Every instruction to twelve bits long every dala word is twelve bitt long, though of course much longer plecea of data can be pui word.

Some rudimentary inatructiona of the FIDO
anted in searby box. The inatructions of are limed in s nearby box. The inatructions of
the fiDo are of two typen: plain oner that fuet ube the main regtator clike clisAR), and the divitued ones. Whith reiect, memory olot or oulpul device. On the FiDO these are divldod the bita that tell the program follower what the operation lat to be: and an addreas of seven devico) is to be operated on

There seven bits allow exsctly 12 a differ ent patiems. (from ooovoovo to xxxxxxx).
 p. 33.) ($\mathrm{H}_{\mathrm{H}} \mathrm{Hz}$.)

The Fido compen with one row of lighte and owitches; the row of lights cen alow the
contento of any qpeeinc working rexiater or contente of any whecinc working register or
memory slot. When the computer is stopped, init is helpful for debugeting programs (eeee p.
$\$ 0$. . FiDo he th only we could tell you oll about the
the many more instruetions. The option blte in the commande that allow farey variatione. or the opton bits in the interfaces, apoken of oarlier, which allow the program to
give different commands to exiernal devicea.
 SUCKY'S WRISTWATCH! oo

BASIC INSTRUCTIONS OF THE FINO CIMPUTER.
operation called fon
clear ac
nised with zeroes.
ADD (from memory to AC)
This adds the contents of the speci-
fied memory location to the contents of the
hed memory location to the contents of the
AC . Result remaing in the AC . Whatever
was in the memory before is atill there.
was in the memory belore is atill there
This instruction is also used to bring
This instruction is also used to bring " the
new pattern to the Ac. eopytng it from the
apecthed memory location: but you have to specthed memory location; but you have to
CLEAR the AC first, so you're Adding it to zero
$0 \times \times 000000000 \quad$ Store
This instruction copies the contents
of the AC to the specified memory tocanton
whatever was in the memory location is Whatever we
destroyed.
100.

Whatever was in the ac ta sttil there
mput
This inntruction eoples the contents
of apecifled device register to the AC.
OUTPUT•
This instruction coplen the contents
of the AC to aspecined device register.
JUMP
This instruction makes the program follower take its next instruction at the
apecifed address and go on from there
test, skip if equal**
This is a common test inatruction,
permitting the program to branch depenparng on varioue coonditions. The contents
of the AC are of the AC are compared with ite specined
core memory location. If they are not the same. the program continues and takes the
next instruction in the normal feshion. IF the two potterna are the same, the pro-
gram follomer Skips the next instruction gram follower SKIPS the next
and goes on to the one afer.

Whatever the next instruction is, then. determines the course of events
if the two patierne If the '
same.

For inatence, that midale inamue
tion can be a JUMP inatruction, toking The program to e whole nother part of
core memory and onem series of ever

$$
\begin{aligned}
& \text { Nore: theae instructions } \\
& \text { utigh1.. }
\end{aligned}
$$

Note: these instructions have been changec
stighly to protect the innocent (you).
This instruction does not
Aclually Actually it offers does not exist on tho can't go intore here. wider exist on the pDp-
packing make. packing makes the. PDP-8 Sinticated insich we
consideritig its mall
in-bit markably eftion-

 pramming man

INSTRUCTION LAHOUT

An accult aspect of computer derign is the matter of how to pack into the eo-many bta of
an tnatruction word all the options the progrtmmer

Por ne particular reaton the instruction seloet bits art uaually on the leff, the addrens bite on the right, and option bits, (no room for
them in thit book, unfortunately) th the The number of bits in the addreat deter-
mines the number of places in the memmery that
he programer cen choos en

Generally a specitic computer has more thar
Deciding what the intruction layouts are
ninget on the srchitectural desien of the
 it all gets worked out together.

1r's ultimately a matier of dosign alegence alegant instruction-set is easy to ube and there fore saves s lot of time and money. Anyone interented in studying the matter might want to compare the PDP-11, a 16 -bit computer with ,
brillimatly designed inatruction-set. with some other 16 -bit computer.)
guess what:
The FIDO is nothing but a stripped-down

The PDP-8.

If you buy a PDP-a from Digital Equipment Corporation. you get all thit and more. Except or the external devicea.) And the PDP-8, of
courve, allowe much bligerer memories than 128 alots. but that': too complicated for here.) Arf.
binary patterns
are what the computer operites on deep down. "Binary Just matana that ondy two symbole are used Juast as docimal" mecras that ien aymbols are used). Parterns
of binary aymbota happen to be electically convenient. so thel'e how computers ere built, but that would thange if zome more convenient set of aymbols came

Binary patterns are very gystematic and eary odeal with. Conalder the number ol binary eymbol
oou cen hove in juat four apaces. $+L E T$ USE THE you cen heve in jual four apaces. \rightarrow LET' S USE THE LETTEHS X AND O. AND PUT THEM IN ALPHABETICAL
ORDER, SO YOU'LL SEE THAT WE'RE TALKING ABOUT PATTERNS. RATHER THAN NUMEERS

You can wee that the patlorn repoute in certalin interenting wayk. Esech column rapeotsithalf co you resd down; adding in now position to the lef doublea

Theoe are the infamous "Dise" you have hoerd cated thoul them. The number of bith in ar thing are the number of apecen which can be alther X oo

Now. the moat basic thet about any compuler
is the worn lengm: thet ite, the number of por
12-6,7 can 710 work

Actuany computers with small word lengths Whe these ary called minlecomputers. Bla computer
have much bigger word lengths. The 1 EM 360 hat a mi-bit word tengih. The Control Data 6600 has a 60 -bil word

Now. It is an interesting fact thst not only are computer memoriten divided up into slots, or bocations, of equal length.

but each of these locationa hat on address. that
la. number by which the contents of the locallon I. E number by which the contents of the local
can be found. And thete numbert aro blrury

Many forme of information are kept in blnary pelterns which sre not numbera. For inclance. letters of the
bit patterns.

 The letter "qn

However, we will have to stop using these
X's and O's. Hi's not really done, so we will witch to the more usual way of writing binary petterns with 1 's and zeroes. Apologies to renders
tho hate numbers; but remember that thase patterne who hate numbers; but remember that these pattern
while wa may write tham out as t's and zeroes. may represent wholly non-numericel kinds
information.) That mesas the tettor Q is [1] $10{ }_{1} 100_{0} 0_{1}$

As you observe, the higher
and mort bits to told thean

Thia brings up some interesting fects
certain numbers are spectal because they are the number of thing
by a certain number of bits.

Above this number they incrense very last, and we generally have to buk them up, but the idea it Mis: ine number of blits yaed to miect eomathing Imite tha number of hingy yu cen elelect anong. or insinnce. in you have acomputer cemary with

Here are mome ramifications
-The word length of e computer determinas how larice a number it can hold. A compuler with
iwelve-vit word can only hold a number up to iogs th one marmory location (oinine we uene poo 000
 IS wa want to use longer numbers we have 10 wit 4-bis computer can sold a number up to es.s3s in
as ne memory lecetion.)

- In deotgning date atructurus. If you uoe Inary codas (rather than. sey. A.phabsacical charsicu hat might turn up.
- In the dasign of the wirco-in inurrutiont a conputer, tharafors. The number of bits net inat inarivection cat

Rock Borton THE WORD BENEATH LHEHMCES THE NIGHER LANE

Every computar it. wired to eccept a upere atored in the computer's memory, and the computer'* prosram follower gets to them, they ube it to reapond die liyme the yery lenThis is called meohing lanpurge. the very lar-
ruage of the mechine it

In most ivalimble computers the machine anguages are binary, meaning composed of only wo alternative aymbois, Binary becine's structure: in permita programs to be reduced to i ingle common lorm of information, and permik
rogrums to be atored in binary memory. Each Individual inatruction or command ordinarity cecup have commands of varying length.

Different computera have different machine languages. but the instructions of ell computer: are basically similiar. Big computers have mo them out faster; but those varititions are just axtre ways of saving ateps, not qualitatively different featuret These deep-down operations ARE ALL THE
THINGS THE COMPUTER EVER DOES. However, In their combinations these instructions can be
woven tnto chains and diadems of complex metiona
all computer programs are even TUALLY FRITTEN OR ENACTED IN THE MACHINE' particular binary language

Now, it it entirely posuible to write your programs at this level. Considering and arran machine-language programming (and assembly progremming: goe examples a liftle later on) Indeod. working at this level is very highly
respected in some quarters. Othere avoid it This the a very serious matter of tuste and what you're working on.

Hicher-level languages, seen on earlier okes, have more convenient forms for people, on a running basis. to the bottom-most codes that make things happen it the machine. All o
them are bulli out of machine language. Writng the language procestors, progrems, that onect or translate thete higher-level languages, is considered a bleck art. (Bee p.30.)
very progranmable device has a machuna unguage," or rock bottom code system that act vates the thing directly; ita program follower hem one instruction to these

True computery are programmabie devices hat can modify their own inatructiona, change their seque

Whr the Cupyter Pall) Is COMPUFER HRCHITECLURE the Nots and Bolts

Computera are basically alike. Igrove their ppearances: a roontul of roaring cabinets may huve a greet, thal in common whit a strial blinkin ox: incueedure. that therefore be the same computer

The atructure of computers, in their gloriou iimianritios and fascir
(Por the architecture of a beginner's con putor, see p. 53: for the arehitecture of some

Computer arehtecture covers three main hings: regtaters (placea where something happen information): memorles (places where notions
happens to information): their interconnections and machine language, all the bottom-level instruc Hons (for this lant see "Rock Bottom." p. 32) registers and memories

Computers are made, banicully, of two where something bappens to information; a memory s. where nothing happens to information. Let's oo over that alowly.

A register is a place where something happenn to information: the information can be nipped arvund. tested, changed ty arithmetic,
or whatever. (We noted earlier that regtstera what connect a computer to its sccessories. They are also principal parts of the computer ithelf.) A memory is a place where nothing hap-
pena to information. A program puta the infor mation there, and there it stays till some pro-
ram pulls it out again or repleces it.

A main or general register (often called
geal the $\frac{\text { pecumuatior. }}{\text { program brings things to be worked on. }}$ coted, compared, added to and so on. There an be several of them in a computer.

Other reginters perform other functions in he computer; aiven computer's design. or arch techture, is largely the arrangement of registera

The reason we don't just have all registers and no memories at all-- is that registery tradihonally cost more than memories. However, some machines are being tried that have all working gisters instead of memory. See STARAN, p. 45 .)
memorien come in all sizes and speed. o lots of computera have big slow memories uch as disk memories, along with their *mall ust memories.

A memory consists of numerous holding places or storage locatons, each holding one word having a specific number of bits (see p UAS NOTHING TO TO WITH ENGLISH WORDS AS NOTHING TO DO WITH ENGLISH words of alphabetical characters. The term refer having a nixed number of bit positions.

One important reason for this atendardize ion is that each hoiding place. or memory loca con, can be given a number or oddress. If
very slot in the memory has on address. infor mation can be atored in specific places:

and groten beck out of speciffc place:

core memory has a defnite rhythm or cycle, into which it divides the passing time. The memory cycle of a sore memory in 20 Im portant that ite duration is oftan called the
cycle time of the comíar. A request to the cyceory made at the beginning of the cycle
memore is honored at the end of the cycle. Core cycled are very fast. being these days about one

A core memory can only perform one set
(ctore or fetch) during one memory cycle.
Core cycles during which nothing is requested of the memory simply go by

One last point about core memories. The number which specifies an addreas to the mem-
ory is a binary pattern-- juat like all the other intormation (see "Binary Patterns," p. 33). (Or more exsclly, whatever binary pattern is sup-
piled to the memory as the address to store or from which to fetch, that pattern will be treated as the address to store or from which to $\frac{\text { fetch. }}{}$ that patiern will be treated as a binary number whether it was supposed to be or not. It could be the alphabetic word GRINCH which got there
by mistake (sce "Debugging." p. Jo), but the by mistake (sce "Debugging," P. 20). bur the
memory will treat it as an iddress number and to the address specified by that pattern.
then what are the differences BETWEEN COMPUTERS

The word length
number of bit-spaces in a main
register and memory siou
The number of maln registers
hay are set up and whet on how
cul take place in and among them:
the instruction set (see nearby)
The amount of menory
The accessories or peripheral

Here's the computer, then. in all its glory a device with a symbolic program. stored in a a device with a symbolic program. stored in
memory, being stepped through by a program follower.

The commands of the program cause the program follower to carry out the individual
., iconeoser

the rock bottom program pollower

How, you ank desparately, does this inner moot proyram follower work? The one that it
built into the computer?

Ahn.

Basicaliy it consints of two apectic rogto-
the Program Counter PC) and the inetruetion Regititer (uabully abbr viated IR), end other electrontc atufr, looesty
 the index finger as the program counter and
imagine that the thumb can nip an instruction imagine that the thumb can inip an instruction
into a liftur cup. the Instruction Reginter or 1 IR what the heck.)

WHEN - program is oet into operation, the binary pattern apecifying its first addret
memory is put into the program counter.

Then the inatruction at that addres: the Instruction register), decoded and carried out.
then the program counter automat ically has one added to it, so it point to the next instruction
held in the commend pulled from menory is and there decoded by the aystem's relectrontica

It is of no concern to the programmer how troni is generally of litule concern to computer people, untess they are trying to design or optimize computers or other devices themselves Indegd, the electronic techniques are constantly
changing.

Alf we need to know is that an electrical decoding system (coalled the logic circuita) earries
out the specific instruction--
for instance. by out the specific instruction-- for instance. by
shuting off the path to the memory. turning on shuting off the path to the memory. furning on the adding circuit and back to the main regrister

Now that the program counter holde the number of the next instruction it in turn is

And so it continues.
When an instruction callis for a jump or branch in the program, what happent?

The Jump command causea a new numbe to be atulfed into the program counter, that'a alternating cycles Many instructions tell the progrann follower
to take a dana word (also a binary pantern) from memory and put it in a main register or vice
versa. Such an inatruction is translated by the
decoding logic into a request to the memory.

Since a core memory can only do one thing during one of ita cyclea, the next instrucdata has moved to or from the memory.

Thus in many types of program the eycles alternate:
instruction cycle (letch the next)
Data cycle
(date goes to or from memory)
Instruction cyele
Data cycle .

FUNJAMENTAL OPERTITONS
 OF COMPUYERS
 IS ABOUT TO UNFOLD.

your bastc commands, now
(Computare exiat which do titue more than thase and yot they can in princlple do anything

TO BE BHOWN: The following are the rock-bortom basic aperations of computert, evalimble is
apecinc inatructiona in all somputers (with nome veriation).

The Arat aven liated balow will be unod in the extended example in the nox

Wad alnary pattern from core mamory to ain reachater

BTORE a binary pattem in corv mentory from a
maln regitater. SND OUT ("OUTPUT") A binary pattern to an bring in (Tinput") a binary pattern from an xiomal covice.

ADD Two binary paterna together. CThis counes them to be tragled as numberr.

Jump-co to ancther part of the progrem
and torgm you were herv.

TEET Two binary pattoria ngeinat sech othar. and branch or not

NOT TO RE SHOWN: Here are the rent of the utterly fundamental commands of consputera
These are not used in the lorthcoming
example.)

TEST ONE SPECIPIC binary pattern. and branch in the program depending on the result. set an accessory in operation/turn it opr REVERSE (or "COMPLEment") binary pattern--
changing all the X 'p to O^{\prime} 's and vice verad LLIDE (or "SHIPT") a dinary pattern videlong through a register.
FLIPPER (or "LOGICal") oparationt betwoen two binary patterta. eapecially -

OR (or "INCLUBIVE OR" or "TOR")result is an X where etither
original pattern wan an X.
 only where both original pal

fancy operations

The following operations are denirabie but not sirlitly recesary, and many computera, an-
peciully minicomputors, don't have them all.

SUBTRACT. (Can alion be done if nocessery
with combination of edde and nipt.)
MULTIPLY. (Can aleo be done if nectasary
with combination of edds, shift and temte.
divide (Can aleo be done if necoesary with
combination of subtrecte, emita and tonto.)
hore Plipper ("Logical") operation

subroutine jumpbut rememember this place because you'll be coming back on your own.
RETURN FROM SUBROUTINE-program that you wherever it wane in the

PUSH (on stack machines only, toe p. p. ake a binary pattern and put it on tog
of the Stack.
POP (on stack machines only, wee ρ.)-.. ake whatevar binary
the top of the Stack.
add one (or "Increment")-- (Ueoful whan you're counding the number of times come bitract one (or "decrement." not "excre-ment")-- (Also uneful when you're countdоле.)
astronomical/infinitesimal arithmetic or FLOATING POINT" arfinmacie) ${ }^{-0}$ operaten a cortain number of significant Digite point-- actually e Binary Point, since then raraly If ever dona deetmally
\rightarrow Very tmporiant in the physicel
 ronke operation can be added to : campu-
ar's instruction-ael if denired-- say. "turn orr's instruction-ael if danirad- say, "turn arnions"-- but the former to more emslly arnhens an output inntruetion. and the
dontior at part of program.

A oomputer, then, intornally juint consication of certain placts to work on information (main regikeru. certain places 10 koepp it the rest of the itme (memoriea). certain pathways and inter connections batween them, in instruction-aet
having certain powars whose Inatructiona can operated on out of memory, and a progrom tollower that curriea out the inatructione of that nstruction-e

ingtruction-azt.

The ayotem of command patiorn
docignod and wired into a particular computar.
each with tis oxact resulte
The inatruetions in the ati are the vocabulaty of a mechine language

The Grear COMPUTER LANGUAGES

certain number of computer languages are very widely accepted and used; 1 list them
here. if you want to learn any of them, I believe here. If you want to learn any of them, I believe
that Dandel MeCracken has written a manual on every one of them. (Not the varianta listed, though.)

Why thejr names are always spelled with capital letters 1 don't know. (Generally they got let down in longer articles, though.)

Good Old FORTRAN

FORTRAN was created in the late fifies Jargely by John Backus, as an algebraic programming sybrem is that it atands for FoRmula
the usual story TRANBiator.)

Fortran is "algebraic, that is, it use an algebraic sort of notation and was moaty suited, in the beginning. to writing programs that carried out the sorts of formulas that you use in highschool agebra. Ams arried to lot of decimal places "scientiftc" numbers) and the handling of arrays, which is numbers) ande mathematicians and engineers do - lot (see Arrays under BASIC)

Portran has grown and grown, however after Fortran I came Fortran 11. Fortran Ill and Fortran IV; as well as a lot of variants like Fortran Pi ("irrational, and somewhere between II and IV"), WATFOR and WATFIV

The Larger Fortrans-- that is, Language processors that run on the bigger computersnow have many operations not contemplated in handling text and so on

BASIC, presented earilier, is in some res pects a aimplified version of Portran.

ALGOL LOST,
 AND PL/I
 ALCOL ia considered by many to be

 one of the best "scientific" languages; it has standard "publication language" in which procedures for dolng thinga are published in this country It is different from fortran in many ways, but a key respect is this: while in fortran the programmer must lay out at the beginning of his program exactly what apaces of core the space in have wha names. in ALGOL The spaces in core memory are not given names or "procedures." When the program follow gets to a apecific procedure, then the language procensor names the spaces in core memory.This has several advantages. One is that it can be used for so-called "recuraive" programs, or programs that call new veraions
of themselves into operation. I guess we better of themselves into operation. I guess we be
not get into that. But mathematicians like it.

Originally this language was called LAL for International Algebraic Language, but then national committees it was given its new name a don't know if anyone consciously named it after Algol, the star.)

It has gone through several versions Algol 62, the publication language, is one thing: Algol 70, the 1970 version, is much wore complicated and strange.

Several vertions of ALGOL have gotten popular in this country. One. developed at the University of Michigan, is celled MAD Michigan Algorithm Decoder): its aymbol is f course Alfred E . Newman, Another favorite (for its name, snyway) is JOVIAL (Jules' Own developed under Julea Schuartz (end Language), amed without his consultation) at syapposedy opment Corporation.

When JBM announced ita Syatem 360 back in 1984, there had been hope that they would support the international lenguage committees computer lirse. No such luck. Instead they announced $\mathrm{PL} / 1$ (Programming Lenguage 1), computer language that weat going to be all
thinte to all men. thinge to ail man

In programming atyle it resambled cobol, but had facilition tor varietien of "eclentific" numbert and some good datas atructure ayistems. It is avalimble tor the 360 and for certain big tam tor Mulrics (eoe p. 45) was writien in PL/I. Whether there are people who love the laspuage I don't know; thare are certainly people who hate 11

Yedech, it's
COBOL
Research and hobby types hate COBOL o Jgnore it, but it's the main business programing
language. Your income tax, your checking aclanguage. Your income tax, your checking ac-
count, your sutomoblle Hcense-- all are presum ably handied by programs in the COBOL language

COBOL, or COmmon Business Oriented Lansuage, was more or less demanded by the Department of Defense, and brought into being by a committee called CODASYL. Which is apparently is belig. COBol uses moatly decimal number is desibed eised basically for batch processing (dascommand formats.

Just because it's standard for bubiness programming doesn't mean in's the best or mos efficient language for business programming: I've talked to people who advocate buinesa pro gremming in FORTRAN, BASIC. TRAC and even
APL. But then you get into those endleas argu ments... and it turns out the endess arguof business programmers only know cobol pragmaticslly settes the argunent Cobol. Which

There are people who say they've discovered Midden beauties in COBOL; for instance, that it's a splendid language for complex pointer manipulation (see Data Structures, p. 26). That's what makea horse racing.

$\int \longrightarrow \begin{array}{r}\text { Some cal/ It Despieabt, } \\ \text { Some dall it Home }\end{array}$

"Aftar you study it for aix months, it makes
sot senee." --AM IBN enthusiast. perfeot sense." --An IBN anthusiast. JCL is a to an IBM 360 or 370 computar. "Subait" to zight . Ita
complication complications, which many call unnecensacy, symbolize

SNOBOL

SNOBOL is the favorlte computing language a lot of my friends. It is a list-processing languge, meaning it's good lor amorphous datit.
atives from several previous list-processing languages. especially IPL-v and COMIT.)

SNOBOL is a big language, and only runs on big computers. The main concept of it is the "pattern match," whereby a atring of symbols examined to see if it has certain characteristics, ncluding any particular contents, relations belveen pecify; and the string substitution, where some specified string of symbols is replaced by another that the programmer contrives

ISSP

is probably the favarite language of the artficialntelligence freaks (see R . $\mathrm{M}(2)$) A fondnesss fo on your masculinity

LISP is a "cult" language, and its adherenta are sometimes called Lispians. They see computer activities in a somewhat different light, as com posed of ever-changing chains of things called cars" and "cudders." which will not be explained .

LISP was developed by John McCarthy at MIT, based lergely on the Lambda-notation of
Alonzo Church. It allows the chaining of oper Alonzo Church. it allows the chaining of oper
ations data in deply intermingled forma. While it runs on elegant principles, most people object to its innumerable parentheses (a feature shared to wome extent by TRAC Language)

Joseph Weizenbaurm, also of mit, has created a language called SLIP, somewhat rosemboung can run LISP-1ike programs without having cocess to a Lisp procensor, which is helpful.

THEN, THEES's AlLWAY's MACHINE LANGUAGE

If you feel tike making programs run fat, and not take up very much core memory, you to machine language, the computer's very own
wired-up deep-down system of commands (see wired-up deep-down aystem of commands (32). it takea longer. usually, but many peo ple consider it very antiofying.

Then. of course, if you have a particula style and approach and sel of intersats, you individual programs for your own purposes

Then you'll work out amplified way calling these into operation and tying thair reaulte and data together

Which means you'll have a language of your

MAGCC LANGUAGES

A computer language is a aystem for casting spells. This is not a metaphor but an exactly true statement. Lach Lenguage has a voeabulary of commande, that is. different orders you can give that are fundamental to the language, and a gyntax. that ie, rules about how to give the command

Learning to work with one language doesn't mean Learning to work with one language doesn' mean
Ine learned another. You learn them one at a time. but after some exporience it gets easier There are computer languages for testing rocketships
and controlling oil refineries and making pictures. There are computer lang-ages for sociological etatistics and designing utomobiles. And there are computer languages which will do any of these things, and more, but with mere difficulty eneral-purpose languages tends to have its own outlock.)

Moyt programmers have a favorite language or twa, and this is not a rational matier. There ase many differen computer languages-- in fact thousanis-- but what they all have in common it acting on series of instructions.
Beyond that, every language Beyond that, every language is different. So for each language, the questions ar

What are the instructions
 HOW DO THE Fin FIT TOGETHER?

Most computer languages involve somehow typin In the commands of your spell to a computer set up for that anguage. (The computer is set up by putting in a bigge program, called the processor for that language.)

$$
\begin{aligned}
& \begin{array}{l}
\text { Sone anuter wifh } \\
\text { doferent latyouge processors lasted }
\end{array} \\
& \text { doferent is ore memary) }
\end{aligned}
$$

Then, after various steps, you get to try your program
Once you know a language you can cast spells in it but that doesn't mean it's easy. A ppell cast in a computer language will make the computer do what you want.

$$
\begin{aligned}
& \text { IF it's possible to do it } \\
& \text { with that coaputer; } \\
& \text { IF it's possible to do it } \\
& \text { in that language; } \\
& \text { IF you used the vorabulary } \\
& \text { and rules of the language } \\
& \text { correctly: } \\
& \text { and IF you laid out in the spell } \\
& \text { a plan that would effectively } \\
& \text { do what ycal had in mind. }
\end{aligned}
$$

BUT if you make a mistake in casting your spell. that is BUG. (As you see from the IFs awore, many types of bugare posfible.) Program bugs can caute unior tunate resulta. (Supposedly a big NA:AA rocket failed in takeoff Ceting the bug out of a progra is called debogan.) t's very hard.

DESIGNING COMPUTER LANGJAGES
Every programmer who's designed a language, and created a processor for it. had certain typical uses in mind If you want to create your own langujge, you figure sut in it, and how you would like is all to fit tave be basic to allow the variations you have in mind. Then you progran your processor (which is usually very hnrd).

HOW DO
COMPUTER LANGUAGES
WORK?
Basically there are two different methods.
A compiling lenguage. such as FORTRAN or COBOL.
compiler propram. which sits in the comper has a compiler program. which sits in the computer, and
receives the input program, or "source program the asembler does. It analyzes the source program and
then substitules for it an object program, in machine language. which is a translation of the source program, and can actually be run on the computer. The relation of the nigher language is not one-to-one to machine language: many instructions in machine language are often needed to compite a single instruction of the source progrom. (A source program of output version.) Moreaver, because of the interdependen of the instructions in the source program, the compiler usually has to check various arrangements oll over the program before it can generate the final code.

Most compilers come in several stages. You have to put the first atage of the compiler into the computer, then run in the source program, and the first stage puts
out a first intermediate version of the program. Then you put this version into a second stage, which puts out a second intermediate version: and so on through various stages This is done fairly automatically on big computers, but on little machines it's a pain
(In fact. compilers tend to be very slow programs; that is, how efficient they try to make the object program

An interpretive language works differently. There sits in core a proceskor for the langusge called en interpreter this goes through the program one step at a time, actually carrying out each operation in the list and going on to $t 0$ do quickie languages.
interpreters are perhaps the easier method of the two to grasp. since they seem to correspond a little better to the way many people think of computers. That doesn't mean they're better. For programs that have to be run the long run; but for programs that have to be repeatedly changed, interpreters are often simpler to work with

A BLACK ART

Making language processors, especially compilers. is widely regerded as a black art, Some people have tricks
that are virtual trademarks (see below).

Actually. the design of a langunge-- espectally the syntax, how its commands fit logether-- strongly influence he design of is processor. BASIC and ApL, ior instance. work left-to-right on each line. and top-to-bottom on a program. Both act on something stored in a work area string that changes size like a rubber band. Other languages exhibit comparable differences.
mixed cases and variations (for the whimsical)
There are a lot of mixed cases. A load-and-go compiler (such as WATFOR) is put into the computer with the program. compiles it, and then starts it going immediately. An interpretive compler ling it into watios of carrying them aut a firm called Digitek is well known for making very good compilers of this type.) An incremental compiler just runs along compiling a command at a time; inis can be a lot faster but has drawbeka.

bibllography.

David Gries, $\frac{\text { Compiler }}{\text { Construction for }}$ Digital $\frac{\text { Computers. }}{\text { Not for }}$ beginners. but a beautiful book.
Good on abstract theory of languages. too.

Acoording to the grapevine

- preatigioun Southern univernity had a program where the num was carelesely set to 10 (as a dimerition in an array). nobody got their chack:

How does a computer program print something out on a printing
machine? It sends the code for oech letter out to the printing machine.

How does a conyputer program reapond to eomething a user types in? It compares the codes that come it rom the letters he types with a ueriee of codes in memory, and whon hids a math or phreses bren chea to the corresponding action.
how does a computer program measure something' It takea in numerical codes from a device which has already made the measurements and converted them to coder

DOES NOT COMPUTE:
Some TV writer's dea of a computer anounces this when contradictory. Ho hum $\xrightarrow{-}$

CODED-DOWN DATA:
an Ima whose time has phssed

Codes are patterns or symbols which
are assigned meanings. Sometimes we make up special codes to cut down the a mount of information that has to be stored On your driver's license, for instance. they may reduce your hair color to one
decimal digi. (four bits of information), decimai dere are less than nine possibilities for quick identification of hair-color anyway

Obvioualy. codes can be any darn thinge eny set of symbols that is less than
what you started with. But by compressing what you started with. But by compressing information they lose information, so that subtleties disappear (consider the use of letters A to F to grade students). When you divide a continuum into categories, not
just the fewness of the categories, but the just the fewness of the categories, but the or "cuting-points"-- present problems. Such chopping frequently blurs out important diftinctions. Coding is always arbitrary, frequently destructive and stupid.

Lote of ways now exist to handle writen information by computer. These often present better ways to operate than by using
codes of this type. But many computer programmers prefer to make you use codes.
(NOTE: there are two other senses of "code" used hereabouts: 1) the binary pat cerns made to stand for any information. especially on input and output; 2) what computer programs consiet of, that is, line
of commends.)

SOME PONTS

"Logical deduction" reaily consists of tech niques for tinding out what's already in a data structure.
"Logical inconsistency" means a data atructure contradicts itaels. Rarely does it happen that a computer helpa you disuover something new about a coming without did compuspect or see comming without the computer; after auch a way as to make coom to in things out, and you can only make room to find some things out.

THE PUNCH CHRD MENTALLTY

Punch carda are not intrinsically evil. But the punch-cerd mentality is still Thin will be seen in the programmer who habituany sets tiningi up to we have to use punch cardin (whan other media, or interactive terminala, would be better); who insiste on the ueer or victim putting down program could handle toxt. which it enealer for the human, or even book up the information in date it hat wroedy): who insiete that prople's lant namea be cut down to eleven lettere becauae he doesn't foel like ieaving a tonger field or handiling exceptions cutting hie information into enerty outionar when auch digention, if needed at all, could be better dome by the program; and $=0$ on.

The punch cerd mentuiry to reaponsible
meny of the woen that have beon blemed
meny of the woes that have boon blemed

The basic kinda of number operations wired into all computera are few: Just add
(and anmetimes qubtract) binary numbera. (and somatimee eubtract) binary numbera.
However, up above the minicomputer rang However, up above the minicomputer range,
a computer may have multiply. divide, and a computer may have multiply, divide, and and operations on them.

PLANN BINARY-- Very important for counHng. Represents numbers as patterns of $1^{\prime} \mathrm{s}$ and 0^{\prime} 's (or X's
and Ons, if you prefer). How to handle negative numbers? Two weys:
NEGATVE--
true negative-- binsry number with a sign bit at the begin-
ning, followed by the number

Trouble is, the arthmetic is harder to wire for this kind, because there are two zeroe (plus and minus) between ADDABLE NEGATVE-- this syatem does a bort of llip and begins a negative number with all chine doesn't have to have sub(raction circuitry: you just add the filpped negative veraion of s number, and that sctually subtracts it. This has now sught on generaly. (at's negative," which has some obscure mathematical meaning) SCD (Binary-Coded Decimal)-- the secoun tant's numbering system. Uaed by COBOL (see p. 3). It's plain old decinal. with every numeral stored in four bits: the machine or language has to add them one numeral at a time, instead of erunching together
full binary words. LOATING PONT Wras. technique for anything that may not come out even. Expresses any quantity as an amount and a size

The "amount" part contains the actual binary numerals, the "size ${ }^{n}$ is after the decimal point that the number starts. Very importent for astronomical and infinitesimal matters, since a floating-point number can be bigger, say. than

9,876,543,210,000
or smaller than
.00000001234567
For some people even thts ian't precise enough, so they program up "nfinite precision arithmetic," which carries out arithmetic to as many
places as they want. It takes much longer, though.
what's available in machines and languages

Sorse machines, like the 360, are more-or-less wired up to handle several number types: binary, noating point, BCD. Little machines usually only have plain bin ary. so other types have that be handed programe

Languager make up for this by providing programs to handle numbers in some or all of thase formats. There are lenguages that offer even more kinds of
numbers.-
imaginary numbers
(two-part numbers
following certain fulea)
(like Imaginary numbera but worse)

On the other hand, some languages reatrict what number facilities are avoilrextrict what number form. BASIC, for instance. doemn't diaunguish between integers. (counting numbers) and those with decimal pointa; all numbers moy hav decimal points. TRAC language only given you integers to start, vince its ansy behavior in aike trantie praciation).

Data is punched into carde according to some plan ansociated with the program

Beyond those simple matters there is no preordained arrangement for information on a punch card; it all depends on whit the program calls for. But each separate plece or section characters that together have a spectific meaning -- are called a field.

A field can be a name, a number. an amount of money, an alphabetical code representing something. a numerical code representing something. or other atuff. When the cards go into the program. the program can pick off
the information it needs one field at a time-putting the field in columns 1 to 17 into one program variable, the field from columns nin to ten into another program variable, and so on.

The punch card is an important example of an input unit innuencing the structure computer programs. It is convenient to use ture of a program and say, "That's the way it has to be for the computer. In the worst casee we see the workingl of the "punch card mentality" or "bo-column mind" (see box)
\rightarrow People will often thrust a punched data card at you and ask. What does thls the top, showing what characters the holes rep resent, but if these characters don't show anything understandable, such as the person's name you're in the dark. The card may have preprinted section lines dividing it up, but these are rarely self-explanatory. It's ofen im possible just to look at a punched card and tell by oye what the individual fields are for. or even where they begin and end; all that depends on the program. Only someone who
understands the program, or at least knows what fields the card is divided into and what the characters represent there, can help.

Sometimes, in diamal systems we encounter day-to-day-- like for university registration \because a punch card will have a person's name in the first tew columns. or worse. a personal serial number. Other information continues nizable, either from reading the holes recog or trom designatons pre-printed on the card

ASCII code. Yau can figure out from he table the bit pattern for any letter, or hat any given combination of seven bits means.

Example, Find the capital letter G code, look at the top of the column: 100 . or the next four, look sideways to the left: 0111. So G la: 1000111 .

(An eighth bit in uned as a check on the number of onat in the code; this la called the parity bif, and olther rounda to an even number of bite (even parity) or an odd number of blts (odd parity). Thus if a wrong number of ones, the computer can take remedial ection.)

Thove funny multletter codes are for controliling terminale and like that

Pocket card courtany of Computer
magnetic storage
Ther data medie principle of helds applies in dlak. We medin. especially magnetic tape and explain recorda and nies. notion of a held to explin reacda and

A fold, generally speaking, is a section particular plece of information reserved for one

A record is a bunch of fields stored on some medium which have some organized use. (For instance, the accounting information held by an electric utility company about o particular
eustomer is likely to be stored as a repord with at least these fields: account number; last name initals: address; amount currently owed,)

A fle is a whole big complete bunch of information that is atored someplace. In many applications a file is composed of numerous an electric company may well store the record for all of its customers on a magnetic record ordered by account number (account 000001 first).

Storing sequences of similar records in ong files is typical of business programs, It's especially suited to batch processing. that is, handling many records in the same way at the same time. (See "System Programs.")

Now. the divistons of field, record and ale are conceptual: they are what the program mer thinks about, based on the information needs of a specific computer program

BLOCKS
A block is something else, which may be related only to quirks of the situation

A block is a section of stored material, divided elther according to the divisions of the data or peculiarities of the device holding it. sored many to block. It recors may they may be made up of many block.
\rightarrow In particular. tape blocks can be almost any size, while diak blocks often have a certain on the peculiarities of the individual device (This can be a pain in the neck.)

On the other hand, due to the quirks of magnetic recording. your program usually can't just change something in the middle of a block: placed. This is less trouble with a short diak block than a long tape file.

traditional conveyer-belt programs
Many traditional busineas programa are of his type, reading in one data record at a time. doing something to it (auch as noting that en individual has paid the exact amount of his gas) nd writing out a new record for that cuatom the problem

Standerdized fields. blocks and recorda ore often necessary or convenient. But, on the other hand. the kinde of computer progreme poople find oppreasive often have their roota in of programming. Bapecially the une of Axed-field ecords as the be-all and end-all. The more interesting uses of the computer (Interactive abliging, artistic. ate.) use a graster variet of data arructures

Pwople's naive itees of "programming" is oftion e reasonable approximation to the notion of "data atructure." Data struc to now informition in idele it; but the twidding opdone are beaed on how the information is set up to begin with.

A CONCRETE EXAMPLE. Suppose we want to represent the geneclogy of the monarchs of Eng England. so far as is known, in a computer date
atructure. NOTE THAT A DATA STRUCTURE is ATFUCLURe. NOTE THAT A DATA STRUCTURE
DFFERENT FROM A PROGRAM: if eeveral program mera agree beforehand on a data structure, then
they can go aoparate ways and each can write a they can go soparate wing anderent with it-- If they program really agroed on a complete and exact liayout. which they may only think they've done.

First we conaider the subject matter $\frac{\text { Gen- }}{\text { is }}$ onlogy is conceptually simple to us, but as data is not as trivial as it mighs seem at first. Every
person has two parente and appectice date of birth Eech pair of parents can have more than one child. and individual parents cen at different times share parenthood with different other individusls.

Presumably we would like a data structure that allows a program to find out who was a given person's porent, who were agiven person's children, what brothers and aistela eson parbon hid ians-- another ditnculty)

Note thst just because it is simple to pur this information in a wall chart. that does not mean it is aimple to figure out an adequate data structure

Note too. that any aspect of the data which is left out cannot then be handl

The easy way out is to use a language like. any. Trac Language, and use ito basic unita (in this case. "forms") to make up a data structure whose individual sections would show parentage. dates. brothers and sisters and so on

The braver approach is to try to set it up tor something like FORTRAN or bASIC. languages which reased array or block, as does rock-bottom machine language.

Let us assume that we have decided to use an array-type data structure, for instance to go with a program in the BASIC language on a 16 bit minicomputer. We do not have much room
in core memory, so for each person in our data structure we are going to have to store a separate record on a disk memory, and call it into core memory as required. Ather much head-scratching, we might
come up with something like the following. It is not a very good data structure. It is not a
very grod date structure on purpose.

It uses a block of 28 words, or 448 bits. per individual. not counting the length of his acter or space. However. this in itself is nel ther good nor bed. It's more than you might expect, but less than you might need.

Incidentally, out of concern for storage space, some dals Dilds are pscked more than
one to 16 -bit computer word. This is scorn one to a 16 -bit computer word. This is scorn-
fully called bit-fldding by computerfolk who work on big machines and don't have to worty sbout such matters.)
 we needn't go into here. NAME AREA (reted 2 leftre

Here are some assumptions I have embodied in thit data atructure. That 18 , I had them in
mind. (The parta you didn't mind. (The parta you didn't have in mind are mind. (The parta y
what get you later.)

Parents and children of monarchs are includ
monarchs.
All monarchs have a separate mon-
arch number monarch relgned more than
twice.
No monarch or parent of a monarch had more than five children of these assumptions.)
We are not interested in grandchll dren of monarchs unless they or parents of monarcha The information about the differen people can be input in any can be stepped through by program to find the order of reign

It this seems like too much bother. that is In a way the point. Date structures must be thought out. Since computers have no intrtnsic particular lenguages will restrict you in pertio ular ways), you will have to work all this out, and a carelessly chosen data structure will leave something out, or fail to distinguish among im portant differences, or otherwise have its revenge
(For instance. if you heven't noticed yet we left out legitimacy. For many purposes we
want to know which kings were bastards.)
(Self-test: is five bits long enough to express the greatest number of months any English do we have to fix this data structure on that ycore also?)

To give you a sense of the sort of program this data structure allows:

A program to ascertain how many kinga were the sons of kings would look at each entry monarch was male, and if male, would look at the male parent's serial number. Then it would look up that parent's entry, and gee whether it in turn had a monarch number. and if so, add one to the count it was making. Then it would go back to the entry it had been looking at,
and step on to the one after that. ar

This is actually a pretty lousy data struc ture. The clumsiness of this approuch to such data-- and you are welcome to think of a better one-- shows some of the difficulties of handling lengths of names and numbers of relatives produce great irregularities, but make these kinds of data no less worth of our attention

We could add lots of thinga to our data structure (and so make it more unwieldy). For
instance, we might want to mark each serial instance, we might want to mark each serial
number specially if it referred to someone who was the offspring of a monarch. We could stmply set a particular bit 101 in the serial number for them (called a nag or (tag). We could also flag dates and genealogies that are regarded as uncertain. There is no $\frac{\text { limit }}{}$ to the exactness
complexity with which
information $\frac{\text { and }}{\text { may be rep }}$ $\frac{\text { complexity }}{\text { resented }} \frac{\text { with }}{\text { But }}$ dich $\frac{\text { information }}{} \frac{\text { it }}{\text { right can }}$, as alwaya be be troublesome.

A lot of computer people want to avoid dealing with complex data; perhaps yau can begin to see why. but we must deal with the true complexities of information: therefore tanguages and systems that allow complex informaeasier to use.
the frontier: complex file structure
of record arrangements of whote files-- groups programmer. The structure of files is cotled not surprisingly. file structure, and it is up to the programmer to decide how his files should be arranged

Habits die hard. The notion of asquanceeven false, imposed sequence-- ts deep in the racial unconscious of computer people. An intercomputer people often think this nicely. Becausa a baste sequence. they use the term inverted flle for a file that has been changed from its ingly, all the sequecte are false and artificiel Where now are inverted files? All hles are inverted if they're anything.

Fortunately, the final frontier of data structure is now increasingly recognized as the control of complex storage of files on disk memofy. The latest fancy term for this th datil bane system, meaning planned-out overall storage tha The fact that IBM now has moved into this
ares (with lits intricate "acceas methods" and all
their initials) means complex atorage controi has helr initials) means complex atorage control has filualy arrtved. although the ploneering work wai done by bachman at GE wome yourz ago
(see biblography). Till the last lew yeara external storage, with pointers and everything. has not been conveniently under the programmer's control except in crude ways. Finally we are moeing ayatema beginning to get around that versatile waye that programmery can une more eaclly.
a pointer the song that had
pointer data structure?

BIBLIOGRAPHY

Malcolm C. Harrison,
Programming-
Scott, Structures
Soresmand
and
1973. \rightarrow This book con be recommended to maries of different languages, as well as fundeme freatment or dat siructures
obscure and intricate study of the interchangeabisity of data structures-- how they fundamentally interconvert-- has been the longtime research of one Anatoi Holt, who calls his work Mem-Theary Mem is from $\frac{\text { memory, and also, conveniently, Hebraw }}{\text { letter. }}$

This is an extremely ambitious study as it in principle embraces not just muc
or all of computer science, but perhaps mathematics itself. Math freaks altention:
Holt has said he intended
to derive all of Holt has said he intended to derive ald
symbolic logic and mathematics from symbolic logic and mathematics from
relationa and pointer structures. Let's

I don't know if Holt has published enything on it in the open interature or not

However, he does have a game avallable which seems weirdly to embody these principies. The game of niem to Pennsylvaniani) trom Stelledar. inc., 1700 Walnut St., Prila. PA 19103. It hea beautifulty colored pieces, looks deceptive Iy simple. and is unlike unything, except
discrete abutractive thinking itself. Recomdiscrete

Charies W. Bachman, "The Pro
Bachman was the prime mover in the development of large linked disk date systems at General Electric: he is
This is about big n-dimensional siutf.
 0 F . Cardenas, "Eviluation of Pile Organ-ization- a Modal and Syatem.
Sep 73. 540-548. Not surprisingly, it Sep 73. S40-548. Not surprigingly,
turns out that difterent nie orgmizations have difforent edvantages.
bagar H. Sibley and Robert W. Taylor, "A Data Definition and Ma

Example of current mophisticatod appronches: : whole language for nailing he dota just the way

DATA STRUCTURE:
 INFORMATION SETUYS

One of the commonest and most destructive mythe about computers is the ides that they "only deal with mumbers" "This is TOTALLY FALSE. Not only is it a ghastly misunderatanding, but it is
ofen an intentional misrepresentation, and as such. not only is tt a misrepresentation but it is a damned le, and anyone who tells it is using "mathematics" is, a wel noodle to beat the reader with.

Computers deal with aymbole and patterns.
Computers deal with symbols of any kind-etters, musica notes. Chinese idegrams. (Numbers come also in various fivors. simple and baroque. See chocolate box, P. 29.

Data structure means any symbols and patterns set up for use in a computer. It means whe things are being taken into sciount set up - what program, and how these things are set upw- what
aymbols and arrangements are used to represent them.

The problem, obviously, is Representing The Information You Want Just The Way You Want it in all its true complexities.

(This is often forbiddingly stated as "making a mathematical model ${ }^{n}$ - but thet's usually in the rhetorical, far-fetched and astral sense in which alphebet are considered to be appecinl distorted kind of number.)

Now it happens that there are many kinds of das atructure, and they are interchangeable in intricate ways.

The same dats, with all its relationships and intricacies, can be set up in a vast variety of ar rangements and styles which ere inside-out and thing (say, the serial number. 24965 , of an automobile) may be represented in one data structure by a set of symbols (such as the dectimal digits 2. 4. 9.6, 5 in that order), and in another data atructure by the position of something else (such as the 24965 th name in a list of automobile owners
registered with the manufacturer).

Furthermore, many different lorms of data may be comblned or twisted together in the same
overall setup. overall setup.

The data structure chosen goes a long way the program.

On the other hand, the computer lenguage you une hate i considerable effect upon the data impose sty you maty choone. Languages tend to aton to program a given problem in a specific ian gunge, such as BASIC or COBOL or APL or TRAC Language, either locks you into apecific rypes of data structure, or exerts considerable pressure to do it a certain way. In most cases you can't set it up just any way you want, but have to edjunt to languages tend to allow more and more types of dota.

Plainly, then, it in these overall structures hai we realy core about; but to understand over al structures, we need an idea of all the different
variables and arrays
The earilest data structuras in computers. and still the precominating ones, are variables, and arreye. (Wa met them earlier under BASIC, see
 of fis numerical eddress.)

An array (aiso calied a cable) is a section of core memory which the programmer cordons of for the programi to put and manipulate data in. If
SPENCER is the name of the array, then SPENCER (1) the firat memory slot in it . SPENCER (2) is the second, and so on up to however blg it is.

(You can get a feel for how this ordinarily relates to input from outside-- see "How
Data Comes, Goes, and Sits," nearby.)

The contents of a numerical field, or piece of data coming in, can simply be atuffed

The contents of a record, or unified et of fields, can get put into an array. The program can then pick into it for separate ariables. If desired, or just leave them there to be worked on

Then you twiddle your variables with your program as desired

When you've done one record, you repeat. That's how tots of business programs go. Some other routine kinds. 100 fancy structures

Many forms of advanced programming are ased on the idea that things don't have to be stored

If things aren't next to each other, we need nother way the program can tell how they belong together.

A pointer, then--sometimes called a link-is a piece of data that tells where another piece connect pieces of data.

pointer can be an address in core memory: it can be an address on disk (diskpointer): it can point to a whole string of data, such as a name. then there is no way of knowing in advance how long the string may be (stringpointer).

A series of pieces of data which point to each Hat.

For this resaon the handiling of data held together by pointers-- even though it may make all sorts of different patterns-- is called list procesaing. (Th (The term "hist processing" might seem to go a-
gainst common sense, as it might suggest somethin gainst common sense, as at might suggest something
like, say, a laundry list, which is structured in a very simple blocklike form. But that's what we call it.)

Prominent list-processing languages include SNOBOL, L6 and LISP (see P. Ji). There is argument as to whether TRAC Language is a list-processing larguage

Here are some interesting structures that
programmers create by list processing:
RINGS (or cycles). These are arrangements of pointera that go around in a circle to their first item again

TREES. These are structuren that fan out. (There are no rings in a tree structure, technically speaking.

GRAPH STRUCTURES (sometimes called plexas). Here the word "graph is not ueved in the ordinary way. to mean a diagratmatic aort of plcture, but to mean any atructure of connected pointa. Ringe and treea are apecial casas of graph atructuren.

Graph siructures

One of the uses of auch structures is in strange types of programs where the interconnec
tlons of information are changing quinkly lons of information are changing quickly and
unprectictibly. Such operations happen fati in core memory. In thla kind of programming for which languages like LISP, SNOBOL and TRAC Language are eapecially convenient), the pointers are changed back and forth in core memory, every which way, all the time. Presumably according to gotten the bugs out. (See masker pian-- If he
fancy flles
But these structures are not restricted to data in core memory. Complex and changeable Siles can be kept on disk in various ways by the same kind of threading (cailed "chaining" on mass
storage).

Another way of handing changeable files is track of where all the other blocks, which keeps

But these techniques, you see, may be used in both fast and slow operations, and for any pur pose. so trying to categorize them tends not to be helpful. Note also that these techniques work hether you're dealing with bits, or character r any other form of data.)

Note: By decent standards of Englioh the word data should be plural, datum singular. But the matter is too far gone: data
is now utterly singular, like "corn" and is now utterly singular, like "corn" and "information," a granular collective w
may be scooped. poured or counted.

But I draw the line at media. Media are many, "modia" is plural!

A CLIASIC MISUNDERSTANDNG

"Computers put everything into pigeonholey."
Wrong. People put things into pifeenholes. And designers of computer pragrams Mare sophisticuted programming cun ofen avoid pigeonholes entirely.

A Bit is Not A Piece
People who want to feel with it People who want to any old chunk of information. like a name or address. This is Wrong. A Bit is the zmallest plece of binary information. an them that can be one
of two thingu, like heads or taile, x or O . one or zero; and all other information can be packed into : countable numbar of bite. How many chosen.)

As a handy rule of thumb svery lattor of tha slphabet or puncIuation mark is wisht bits gee ASCII box): for hanvy storage of everydey
dectmal numbers. every numerical dectign can be further packed down (io cour bita in BCD code)

This language is superb for "gcientific" programming including heavy number formulas on smail data bases. (Big data bases are a problem.) It is also not bed for a variety or simple businting. applications, auch as
billing and inventory
fast answerback in apl.
th you went quick answers, the APL terminal just gives you the result of whatever you type in. For instance.

$$
3 \times 4
$$

will cause it to print out
12
and the same goes for far less comprehensible
stuff like

$$
7 \geqslant 4 \phi \underbrace{\sum_{2}^{23} \text { 4 (carriage return) }}_{\text {ryped-in array }}
$$

programs in apl
But the larger function of APL is to create programe that can be atored, named and carried out at a ister time

For this. Apl allows you to define programs, line at a time. The programs remaln stored in the abtem as long as you want. Using the "Del put in a program. Del causes the terminal to help you along in various ways.

A nice festure is that you can lock your APL programs, that is. meke them inaccessible programmers or not. in this case you dif program starting with the mystical sign del-titde program starting with the mystical sign del-titde
(fop) insted of del (∇), and invoke the names
of dark spirita.

APL, ilke BASIC. can be ciassed as an aigebraic languege-- but this one is bullt to plesse only they know about, like Inner and Outer Products.
aradoxically. this makes APL terfific for teaching thete deeper mathematiceal concepts, helping you sect the consequences of operanions and ininga. Matrix algebra, for instance cen visubized a lot better by working up to it with leaser concepts (iike vectors and
inner products) enacted on an APL terminal. I would be really 5 well if someone would put to-
gether a tour-guide book of nigher mathem atice at the grade/highachool level for people with acceas to APL.
Interestingly, Alfred Rork (U. of Cal. al Irvine) in taking a stmillar approach to teaching physics. using APL as a fundame
lenguage in hio phyalics couracs.
sneaky repeater statement in apl
One of the APL operatora, "fots" (\mathbf{v}) sames to make lts own progrum loop within a lin When used one-sided, it furnishes a series of on. This untit the liat one is reached
 In other worde, one-sided lote looke to be dodng tit own litue loop, increating the atarting
number by 1 , unith it gets to the value on tie right and chugi on down the line with wich

Very eneeky way of dolng a loop.
However! Il len't roally looping. exactly What the tode does ha cratio a one-dimentional on the right. This result to what then movet on lafnerd
terminals
For an APL terminal, you might fust want a 2741 from IBM (about a hundred a month, but on year contract).

Or see the fist under "Terminals" (p.|4) or ask your friendly APL company when you aign up.

Two mare APL terminals, mentioned here instead of under "Terminalg" for no special reason

Tektronix offers one of its greenie graphles terminals (see titp side) tor APL (the model 4013). This permits APL to draw pictures for you. ti seems to be an ASCli-type unit

Computer Devices, Inc. supposedly makes an an APL terminal using the nice NCR thermal printer typewiter. Spookier. though. And the mpeciel typewriter. Spookier. tho
paper costs a lot of money.
bhaliography
Iverson has a formal book. Ignore it unless you're A Programming Lengers. Wieyson.
 Berry. APL \360 Primer. Student Text.
Available "through IBM $\begin{aligned} & \text { branch offices, } \\ & \text { tBM Technical Publicatians Department }\end{aligned}$ or 112 East Post Road. White Plains, NY 10601 publication number on it, which is sort of odd. 1969
written simpla, clear computer menuals hat is to be fou, clear computer manuals to be found. Such a statement may manuals, but it's tre
A.D. Falkotf and K.E. fverson, APL $\backslash 360$ Ugers' Manual. Also availa
POCKET CARDS «giving very compressed sum marles) are available from both

Scientific Time Sharing Corp.
(see WHERE TO GET iT)
nicel Publications Dept., IEM
H2 East Post Road. White
Plains. N.Y. 10601 .
Ask for APL Referenc Data card $5210-0007-0$. May

Paul Berry. APL \1130 Primer. Adapted from $\mathbf{3 6 0}$ manual. Same pub. But for version of APL that runs on the IBM 1130 minicomputer.
A. Sykes, "The tise and Misuse of APL." A. Sykes, "The tise and Misuse of APL."
s2 from Scientific Time-Sharing Corp.. s2 trom Scientific Time-Sharing Corp..
7316 Wisconsin Ave., Bethesda MD 20014 A joker for you math treeks. Trenchard More,
 thing, a sart of massive set theory of APL, intended to make APL operaiors apply to provability of programs
on Target with APL," A suggesty
sales thingy. 1BM Gs20-2439-0
IBM has a videotaped course in APL by A.J. Rose (Done 1968.)
\Rightarrow what you really need to get atarted is Berry's Primer, Falkoff and iverson's manual, and a pockel card. Plus of course the system and the friend to tutor you Power snd simplisity do nor often go rogelner.
APL is an extremely powerful language for mathematics. physics, stanstics , stmalalon
and so on. However, it is not exactly simple. Ins not ensy
to debug. Indeed. APl, programs are hard to debug. Indeed. Apse of their densiry. And the APL language does not fit very well on
minis.

APL is not just a programming languag is also used by ber the is a orm notetion description language, that is, a lorm orture. algebraic systems. computers or whatever)

For ingtance, when 1 BM 's 360 computar high-closs article dencribling formally in APL just what 360 do (the machine's architecture).
But of courso inis wat even less comprehensible But of courso this was ever less comprehensib han the 360 programiming manual

Falkoff, A.D., K.E. Iverwon and E.H. of Syntem 360 ." lBM Syateme lourna of System 3.1964 .
tBM $\frac{\text { Syslom } / 360}{\text { Operating }}$ System: Assamblar Langutice
C28-614
Decument Numbor
(where
 Tochnics
Now York.
The Manual

```
Few people know ell of APL, or would want to.
    The operations are diverse and obible only
    to people in mathematical fields.
    ever. it you know a dozen or so you can
    really get off the ground
    As in BASIC, you can use subscripts to
gwat speciticelements in arrays. Referring to
the examples above. If you type
            JOE [2]
you get back on your typewriter its value
                            7.1
and if you type
            NORA[2.4]
you get back
        d
    There are basically four kinds of information
med by APL, and all of them can be put in arrays.
Three of hese types are
    Integer arrays: 2 4 - - % 8 10 2048
    Scalar arrays: 2.5 -3.1416 0.001 2795333.1
        (o scalar is something that can be
        measured on a ruler-like scale.
        here there are always points
        in betweeen.)
    Logicel arraya: 1 0 0 0 1 0 l
        these arrays of ones and zeroes are
        called "logica!" for a variety of
        reasons: In this case we could call them
        logical" simply because they are used
```

Thene three numerical types of information may be
reely intermixed in your arrays. One more type
however. is allowed. It's hard to figure out from
the manuels, but evidently this type can't be
mixed in with the others too freely. We refer to
the alphabetical or "literal" array, as in

The quick brown fox fumped over the lazy dog
Now，pre－written APL programs can print out literal information，end accept it from a user a a terminal，which is why APL is good for the reation of systetns for naive users（see＂Good－Guy Systems，${ }^{2}$ p．13）．

Literal vectors may be picked apart． rearranged and assembled by all the regular APL operators．That＇s how we twiddle our text
crashing the symbols together
Now that we know about the operstors and the arraya，what does APL do？

It works on arrays，singly and in pairs， according to those funny－looking symbols，as the APL processor scans right－to－left．

TVERSON＇S TAFFY－PULL

A A	forget A^{\prime} s old dimensions． make it one－dimensional． make A and B one long one－dimensional array．

Kere is how we make thinge appear and disappear （＂Compression．＂）

A／B A must be a one－timensional
array of ones and zeroes． The result in those elementa of B aelected by the ones Example：
$1 / 0$
reauts in

The opposite alanh has the opposite effect inserting extri null elementa where there are zeroes：$\quad 1101 \backslash 35$ retults in
3
3

Here＇s another melector．This operator aket the first or last few of A ．depending on aize

B \uparrow A
and $\theta \downarrow A$ in the opposite
If you want to know the relative ponitiona of umbers of diffarent sizas in a one－dimensional array．

4 （name of array） will tell you．It givea you the poatitions．in of atre，of the numbers．And dows it to deecending order．

These are fust samples．The list goes on

Here is an APL program that types out backwards what you type in．First look at the
program，then the explanation below．

$\nabla \mathrm{rev}$

［1］にロ
［2］${ }^{[-\infty}$

Explanation．The down－pointing trianglea （＂dels＂）symbolize the beginning snd end of a program，which in this case we have called REV．
On Line 1，the＂Quote－Quad＂symbol（on the right auses the APL processor to wait for alphabetical input．Presumably the user will type something The user＇s line of input is stuffed into thing or array 1．The user＇s carriage return tells the APL program．On the second line．APL takes array 1 and does a one－sided ϕ to it ，which happens to mean turning it around．Left－arrow into the quote－quad symbol means print it out

Because of APL＇s compactness，indeed，this magnificent program can all go on one tine $\nabla \mathrm{rev}$
「1ロヶめIヶロ ∇
First the input goes into 1 ．then the processor does －PI（reversal）and puts it out

And here is our old friend，the fortune－cookie risoner
$\nabla \mathrm{inf}$
［1］$\square \leftarrow$ help．i am caught in a loop
［2］\rightarrow

∇

On line 1 the program prints out whatever＇s in quotes．And line 2 causes it to go back and do line 1 again．Forever．

THE TEST－AND－BRANCH NAPL

It should be mentioned at this point tha branching tests are conducted in APL programs by specifying conditions which are either true o （This is another thing these logical arrays are for

Example：

This operation leaves the number 1 ，because 3 s greater than 2．So you could branch on a teat with something like

$$
\rightarrow 7 \approx A>B
$$

which branches to line 7 in the program it A is reater than B．and is ignored（as an unexecutable

Some love it，some hate it

THE APL ENVIRONMENT

Aside from the APL language itself，to program in APL，you must learn a lot of＂system＂ the APL processor what you want to do in general －what to store，what to bring forth from storage． and so on．

Ordinarily you have a workspace，a collec ion of programs and data which you may summo py name．When it comes－that is，when the com your terminal that it is ready－－you can run the programs and use the data in your workapace． You can also have passworda for your different workspaces，so others at other terminals cannot
tamper with your stuff．

This is not the place to go into the syatem ommands．If you＇re serious，you cen learn them rom the book or the APL balesmen．

There are many，many dilferent error messages that the APL processor can send you depending on the circumatancet．It in poasibl here are arror mesaagoa for inll of them． of them，that is，that look to the computer like arrors：if you do momething permianible that＇ ot what you intended，the computer will not ell you．

But it is a terminal language，dealigned to
help people muddie through
Good Iuck

IVERSOV＇S
 STKANGE AND WONDERFUL CHOICES OF STMBOLS

verson＇s notation is built around the curlous principle of having the same symbols mean knows he uses enough different symbols；doubl up at least means he doasn＇t need any more．）It turns out that this notation represento $\frac{\text { anere．}}{\text { consistent }}$ series of operstions in astounding combinationt．

The overall APL language．really．is the carrying through of this notation to create an im impetus obviously come from the desire to make various intricate mathematical operations easy to command．The result，however，is a programming language with great power for simpler takks as well．

Now，the consequences of this overall idea were not determined by God．They were worke out symmetrical－looking and easy to remember． What we see is the clever exploitation of apparent but inexact symmetries in the ideas．Often APL＇s one－sided and two－sided pairs of operators are more suggestively similar than really the same thing．

When Iverson assigns one－sided and two－ sided meanings to a symbol．often the two meanings may look natural only because Iverson is such an may look natural only because Iverson is such an
artist．Example：

This makes sense．To argue that it is inherent in ＂taking away halt the idea of multiplication．＂ however，is dubious．

Some symmetries iverson has managed to come up with are truly remarkbble．The arrow． for instance．The left arrow

$$
A \leftarrow B
$$

Assignment statement：B（which may have been computed during
the leftward scan）is essigned the name of $A_{:}$

```
and the right arrow:
```

$\rightarrow B$

The jump statement，where B
（which may have been com－
is a statement number：the
program now goes and execu that line．

This symmetry is mystically interesting becaume the assignment and jump statements are so basic to programming

Or consider this：
$\square \leftarrow x$
print x
$X \leftarrow \square$
take input from the user and stuff it into X ．

Another weird example：supposedly the conditional branch
$\rightarrow B / A$
（one way of writing．＂jump to A it B is true＂） is a specisl case of the＂compression＂operator
（Berry $360 \frac{1}{\text { primer．}} 72$ and 165 ．）Thla is very hard to understand，although it seems ctear whil you＇re reading it．

On the other hand，there is every indication hat APL is so deep you keep finding new truths in it．（Like heabour paph．The whole thing is just unbelieveble．Hooray for stl that

APL FOR USER－LEVEL SYSTEMS
Because APL can solicit text input from a user and analyze it． the language is powerful for the creation of user－level environmenis and ay stems－－with the drawbeck，universal to all ibm cerminals， It can＇t be as fully interactive as computer languages that uas ASCI torminals．

Needicas to soy．the mathematical elegance and power of the it＇s nice to know it＇s there

APL in probsbly beal for systems with well－defined and weg regated fiter－－＂array－type problems，＂like pay roll．accounts and so on．It he not sulted for much harger amorphous ond evolution sou＇re poing to store lerge evolying texts or huge brakerage date bases．like what tankort are tree in the Mediterranean

The quicket！payoff may lie in using APL to raplace busines forms and hasten the flow of information through a company．A andesman on the road with in APL terminal． inventory directiy．If the program ia up

Here is another example nhowing how we chug along the row of symbols and take it apart. Again. the alphabetical entities represent things.

Arst operation (one-alded)
second operation (two-sided)
Try dividing up these examples:
020 вомво
ELEANOR SAM \because susie
One more thing needs to be noted. Not only can we work out the sequences of operations, from right to left, between the symbois; the computer can
carry them out in a stable fashion. Which is of carry them out in

N8IDE

The truth of the matter is that APL in the comier is a continuing auccession of thinga being operated on and replaced in the work area.

Suppose we have a simple user program,

$$
Y+-z
$$

Starting at the right of this user program, the main APL program puts 2 into the work area. That' the first thing. Then. stepping left in the user program. the APL procesmor follows the discovera that the next operation makes it

Which happens to mean, "the negation of Z." So it carries this out on Z and replaces 2 with the result
-2 . Then, continuing to scan leftward, the APL processor contunues to replace what was in the work ares with the result of each operation in the successive lines of the user program, thil the program is completed.

SOME APL OPERATORS

It would be insane to enumerate them all. but here is a sampling of APL's operators. They're all on the pocket cards (see Bibliography).

$$
\begin{aligned}
& \text { For old times' sake, here are our triends, } \\
& \text { (And a cousin thrown in for symmetry.) }
\end{aligned}
$$

+A	plain A
	(whatever A should happen to be)
A+B	A plus B
	(whatever A should happen to B. heh heh)
-B	negation of B
A-B	A minus B
$\times 8$	the sign of B
	(expressed as -1,0 or 1)
$\mathrm{Ax} \times$	A times B

And here are some groovies:
iA factorial A
A ($1 \times 2 \times 3 \ldots$ up to A)
the number of possible
combinations you can get from B
taken A at a time
A a ranamineger
A?B take some integers at random
from B. How many? A.
But, of course, APL goes on and on. There are dozens more (including symbols made of more than one weird APL symbol, printed on top of each other to make a new symbol)

Consider the incredible power. Single APL symbols give you logaritims, trigonometric functions, matrix functions, number system conver sions, logs to any arbitrary base, and powers of e (a mysterious number of which engineers are fond).

Other weird things. You can apply an operation to sil the elements of an array using the $/$ operstor: $+/ A$ is the sum of everything in $A, x / A$ is the combined product of everything in A. And so on. Whew.

As you may suspect, Apl programs can be incredibly concise. (This is a frequently-heard criticism: that the conciseness makes them hard to understand and hard to change.)

MAKE YOUR OWN
Finally and gloriously, the user may define his own functions, either one-sided or two-sided, with alphabetical names. For instance, you can create your own one-sided operator ZONK, as in

ZONK B
and even a two-sided ZONK
A ZONK B
which can then go right in there with the big boys:

$$
\text { A } \oint \text { ZONK } \downarrow \downarrow \text { 日 }
$$

Don't ask what it means, but it's allowed.

APL THINGS, TO GO WITH YOUR OPERATORS
As we said, APL has operators (already explained) and things. The things can be plain explained) and things. The things can be plas or Arrays (aiready mentioned under BASIC). Think of them as rows, boxes and superboxes of numbers:

246810 a one-dimensional thing
35
stwo-dimensional thing
three-dimenaional thing. seen from the front. Maybe e better look at the levels ${ }_{3} 3$ bide by side: $\begin{array}{lll}1 & 3 & 2 \\ 5 & 7 & 6\end{array}$

APL can have Thing with four dimensions, five and so on, but we won't trouble you here with pictures.

Oh yes, and finally a no-dimensional thing Example:

75.2

It is called no-dimensional because there is only one of it, so it is not a row or a box.

Seriously, these are arrays, and Iverson's APL works them over, turns them inside out, twist and zaps through to whatever the answers are.

As in BASIC and TRAC, the arrays of APL are really stored in the computer's core memory associated with the name you give them. The arrays may be of all different sizes and dimen sionality:
(sog

NUM,
[3.146]
(a zero-dimensional array. Ince it's only one number.)

Each array is really a series of memory locations with its label and boxing information-- dimensions and lengths-- atored separately. One very nice thing about APL is that arrays can keep changing
their sizes freely, and this need be of no concern to the APL programmer. (The arrays can slso be boxed and reboxed in different dimensions just by changing the boxing information-- with an operator called "ravel.")

STOP THE PRESSES!
 An APL machine, a mini that does nothing but APL.

 is now avallable from a Canadian firm for the mere pittance of THREE THOUSAND FIVE HUNDRED DOLLARS,the price of many a mere terminal. This according to Computerworld. 10 Ott 73.

Run, don't walk. to Micro Computer Machines, Inc. . 4 Lanaligg Sq.. Willowdale, M2J IT1, Ontario, Canada. That $\$ 3500$ gets you a 16 K memory, the APL program, keyboard and numerical keyboard, and plasma display. Casselte (which apparently storea and retrieves arrays by name when called
by the program) is $\$ 1500$ extra. RUNS ON BATTERIES. Sorry. by the program) is $\$ 1500$ extra. RUNS ON BATTERIES. Sorry.
no green stamps. (Note that the APL processor takes up most no green stamps. (Note that the AP
of the 16 K , but you can get more.)

- -

The rumor that IBM has APL on a chip. Inaide a Belectrlic -- which therelore does all these things with no external The rumor has been around for some time.

But it's quite posatible
The thing is, it would probably destroy IBM'e entire product line-- and priclng edifice

TWO-SIDED OPERATORS
In old-fashioned notations, such as ordinary arithmetic, we are used to the idea of an operator between two things. Like

$2+2$

or in algebra,

$x \mathrm{X}$

STARK \& CLEVER APL

Some people call it a "scientific" language. Some people call it a "mathematical" language. Some people are most struck by its use for interSome people are most struck by its use for in active systems, so to them it's an interactive
language. But most of us just think of it as THE LANGUAGE WITH ALL THE FUNNY SYMBOLS, and here they are:
PRVCAZXWYEHTO/XL SJGKH

Enthusiasts see it as a language of inconceivable power with extraordinary uses. Cynics remark that it has all kinds of extraordinary powers for inconceivable uses-- that is, a weird elegance, much of which has no use at all, and some of which gets in the way.

This is probably wrong. APL is a terrific and beautiful triumph of the mind, and a very useful programming language. It is not for everybody, but neither is chess. It is for bright children, mathematicians, and companies who want to build interactive systems but feel they should stick with IBM.

APL is one of IBM's better products, probably because it is principally the creation of one man, Kenneth Iverson. It is mainly run on 360 and 370 computers, though implementations exist for the DEC PDP-10 and perhaps other popular machines. (Actually Iverson designed the language at Harvard and programmed it on his own initiative after moving to IBM; added to the product line by popular demand, it was not a planned product and might in fact be a hazard to the firm, should it eatch on big.)

APL is a language of arrays, with a fascinating notation. The array system and the notation can be explained separately, and so they will.

Let's just say the language works on things modified successively by operators. Their order and result is based upon those fiendish chicken scratches, Iverson notation.

THAT NIFTY NOTATION

The first thing to understand about APL is the fiendishly clever system of notation that Iverson has worked out. This system (sometimes called Iverson notation) allows extremely complex relations and computer-type events to be expressed simply, densely and consistently.
(Of course, you can't even type it without an IBM Selectric typewriter and an APL ball. Note the product-line tie-in.)

The notation is based on operators modifying things. Let's use alphabetic symbols for things and play with pictures for a minute.

In considering the successive meanings of this rebus we are proceeding from right to left, as you note, and each new symbol adds meaning This is the general idea

You will note, in this example, the curious arrangement whereby you can have several pictures, or operators, in a row. This is one of the fun features of the language.

These, too, occur in APL; indeed, APL can also nest two-sided operators-- that is, put them one inside the other, like the leaves of a cabbage. Old-fashioned notations nest with parentheses. But APL nests leftward. It works according to a very simple right-to-left rule.
$\times \times$ y $\times \underbrace{2+2}$

is operated on by the next thing and operator. yielding another result,
which is in turn operated on by the next thing and operator, yielding final result.

ONE-SIDED OPERATORS

We are also used to some one-sided operators in our previous life. For instance:
means the negation of 1 ;

$$
-(-1)
$$

means negating that
APL can also nest one-sided operators.

AME SYMBOLS WORK BOTH WAYS

Now, one of the fascinating kickers of APL is the fact that most of the symbols have both a one-sided meaning and a two-sided meaning; but, thank goodness, they can be easily kept straight.

Here is a concrete example: the symbol \lceil or "ceiling." Used one-sided, the result of operator \lceil applied to something numerical is the integer just above the number it is applied to: $\lceil 7.2$ is 8 . Used two-sided, the result is whichever of the numbers it's between is larger: $10\lceil 6$ is 10 . (There is also L, floor, which you can surely figure out.)

Now, when you string things out into a long APL expression, Iverson's notation determines exactly when an operator is one-sided and when it is two-sided:

As you go from right to left,

you generally start with a thing on the right. Then comes an operator. If the next symbol is another thing, then the operator is to be treated as a twosided operator (because it's between two things). If the object beyond the first operator is another operator, however, that means APL is supposed to stop and carry out the first operator on a one-sided basis. Example:

op,
op--
stop. Conclusion
The first operator
is one-sided.
Interpretation:
"negate B .1
Then take next symbol.

A WEIRD EXAMPLE, TO HELP WITH THE NOTATION.

Just for kicks, let us make up a notation having nothing to do with computers, using these Iverson principles:

1) If an operator or symbol is between two names of things, carry it out two-sidedly If not, carry it out one-sidedly.
2) Go from right to left.

The best simple example 1 can think of involves file cards on the table (named A, B, C...) and operators looking like this
$\begin{array}{lllllll}02 & 452 & 902 & 1802 & 45 \% & 905 & 1805\end{array}$
to which we may assign the following meanings:

ONE-SIDED: ROTATION OPERATORS	
0) A	do nothing to A
452 A	rotate A clockwise 45°
90) A	rotate A clockwise 90°
	ete.

TWO-SIDED: STAPLING OPERATORS
B 45. A staple A (thing named on the right) to B (thing named on the left) at a position 45^{*} clockwise from middle of B 's centerline.

And equivalenty for other angles.
Now, using these rules, and letting our things be any file cards that are handy, here are some results:

It's hard to believe, but there you are. This notation seems adequate to make a whole lot of different stapled patterns.

Exercise: Use this nutty file card notation to program the making of funny patterns. Practice with a friend and see if you can communicate patterns through these programs, one person uncomprehendingly carrying out the other's program and being surprised.

The point of all this has been to show the powerful but somewhat startling way that brief acribbles in notations of this type can have all sorts of results.

which is allowed to survive as is, because the moving finger of the TRAC scanner does not re-scan the result.

It is left to the very curious to try to figure out why this is needed.

FAST ANSWERBACK IN TRAC LANGUAGE

TRAC Language can be used for fast answerback to simple problems. Typing in long executable TRAC expressions causes the result, if any, to be printed back out immediately.

For naive users, however, the special advantage is in how easily TRAC Language may be used to program fast answerback environments of any kind.

A SERIOUS LANGUAGE; BUT BE WILLING
TO BELIEVE WHAT YOU SEE
TRAC Language is, besides being an easy language to learn, very powerful for text and storage applications.

Conventional computer people don't necessarily believe

 or like lt.For instance, as a consultant I once had programmed, in TRAC Language, a system for a certain intricate form
of business application. It worked. It ran. Anybody could be taught to use it in five minutes. The client was considering expanding it and installing a complete system. They asked another consultant.

It couldn't be done in TRAC Language, said the other consultant; that's some kind of a "university" language. End of project.

HOW TO GET IT

There have been, until recently, certain difflculties about getting access to a TRAC processor. Over the years, Mooers has worked with his own processors in Cambridge. Experimenters here and there have tried their hands at programming it, with little compatibility in their results. Mooers has worked with several large corporations, who said sald they wanted to try processors to assess the value of the the language, but those endeavors brought nothing out to the public.

FINALLY, however, TRAC Language service is publically available, in a fastidiously accurate processor and with Mooers' blessing, on Computility ${ }^{1 m}$ timesharing service. They run PDP-10 service in the Boston-to-Washington area. (From elsewhere you have to pay long distance.) The charge should run $\$ 12$ to $\$ 15$ per hour in business hours, less elsewhen. But this depends to some extent on what your program does, and is hence unpredictable. A licensed TRAC Language processor may be obtained from Mooers for your own favorite PDP-10. Processors for other computers, including mints, are in the planning stage.

TRAC Language is now nicely documented in two new books by Mooers, a beginner's manual and a standardization book (see Bibllography).

Since Mooers operates a small business, and must make a livelibood from it, he has adopted the standard bus iness techniques of service mark and copyright to protect his interests. The service mark "TRAC" serves to identify his product in the marketplace, and is an assurance to the public that the product exactly meets the published standards By law, the 'TRAC' mark may not Rockford programs or products which do not come from ckord Research, Inc.

Following IBM, he is using copyright to protect his documentation and programs from copying and adaptation without authority.

Mooers also stands ready to accommodate academic students and experimenters who wish to try their hands at programming a TRAC processor. An experimenter's license for use of the copyright material may be obtathed for a few dollars, provided you do not Intend to use the reaulting programs commercially.

For information of all kinds, including lista of latest Iterature and application notes, contact:

Calvin N. Mooers
Rockford Researeh, Inc.
Cambridge, Mass. 02138 Tel. (617)876-6776

TRAC® PRIMITIVES*

OUTPUT.
PS, string
PRINT STRING: prints out the second argument
INPUT.
READ STRING: this command is replaced by a string of characters typed in by the user, whose end is signalled by a
CM, arg2
CHANGE META: first character of second argument becomes
RC
meta character. May be carriage-return code.
READ CHARACTER: this command is replaced by the next character the user types in. Permits highly responsive inter-

DISK COMMANDS.
SB, blockname, form1, form2 . .
STORE BLOCK: under block name supplied, stores forms listed.
FB, blockname
FETCH BLOCK: contents of named block are quletly brought in
to forms storage from disk.

MAIN FORM COMMANDS.
DS, formname, contents
DEFINE STRING Discussed in text
CL, formname, plug1, plug2, plug3...
CALL: brings form from forms storage to working program
Plug1 is fitted into every hole (segment gap) numbered 1 ,
plug2 into every hole numbered 2, and so on.
SS, formname punchout 1 punchout2
SEGMENT STRING: this command replaces every occurrence
of punchoutl with a hole (segment gap) numbered 1 , and so on.
INTERNAL FORM COMMANDS.
(All of these use a little pointer, or form pointer, that marks a place in the form. If there is no form remaining after the pointer, these instructions act on their last argument, which is otherwise ignored.) in, formname, string, default

Looks for specified string IN the form, starting at pointer. If not found, pointer unmoved. (NOTE: string search can also be done ricely with the SS command.
CC, formname, default
CALL CHARACTER: brings up next character in form, moves pointer to after it
CN, formname, no. of characters, default
CALL N: brings up next N characters, moves pointer to after them.
CS, formname, default
CALL SEGMENT: brings up everything to next segment gap, CALL SEGMENT:
moves pointer to it.
CR, formname
CALL RESTORE: moves pointer back to beginning of form.
MANAGING FORMS STORAGE
LN, divider
LIST NAMES: replaced by all form names in forms storage,
with any divider between them. Divider is optional.
DD, namel, name2 ...
DELETE DEFINITION: destroys named forms in forms storage.
DA DELETE ALL: gets rid of all forms in forms storage.

TEST COMMANDS
$E Q$, firsthing, secondthing, ifso, ifnot
Tests if EQual: if firsthing is same as secondthing, what's left
is ifso; if not equal, what's left is ifnot.
GR, firstthing, secondthing, ifso, if not
Tests whether firsthing is numerically GReater than secondthing. If so, what's left is ifso; if not, what's left is ifnot.

OH YEAH, ARITHMETIC.
(All these are handled in decimal arithmetic, a character at a time, and defined only for two integers. Everything else you write yourself as a shorty program.)
$\left.\begin{array}{l}\mathrm{AD} \\ \mathrm{SU} \\ \mathrm{ML}\end{array}\right\}$
DI
mentioned in text.

BOOLEAN COMMANDS.
(Several exist in the language, but could not possibly be understood from this writeup.)

[^5]BIBLIOGRAPHY
Calvin N. Mooers, The Beginner's Manual for TRAC ${ }^{(\mathbb{B}}$ Language, 300 pages, $\$ 10.00$, from Rockford Research, Inc.
(See "Where to Get It.")
Calvin N. Mooers, Definition and Standard for TRAC ${ }^{(1)}$ T-64 Language, 86 pages, $\$ 5.00$, from Föck $\overline{f o r d}$ Research, Inc.
Calvin N. Mooers, 'TRAC, A Procedure-Describing Language for the Reactive Typewriter, " Communications of the ACM, v.9, n.3, pp. 215-219 (March 1966). Historic paper, out of print. This paper is copyrighted, and the copyright is owned by Rockford Research, Inc., through legal assignment from the Association for Comput ing Machinery, Inc.
And for those who want to understand the depth of the standardizathon problem, Mooers offers ireeble reprints of:
Calvin N. Mooers, "Accommodating Standards and Identification of Programming Languages," Communications of the ACM,
v.11, п. 8, pp. 574-576 (August 1968).

3. Drilling the holes

The holes (called by Hoers segment gaps) are created by the SEGMENT STRING instruction.
\#(SS, formname, whatever 1, whatever 2 ...)
where "formname" is the form you want to put holes in and the whatevers are things you want to replace by holes. Example: Suppose you have a form

INSULT YOU ARE A CREEP

You make this more general by means of the SEGMENT STRING instruction:
\#(SS, INSULT, CREEP)
resulting in
INSULT YOU ARE A []
which can be filled in at a more appropriate time.
Fuller example. Suppose we type into the TRAC processor the following:
\#(DS, THINGY, ONE FOR THE MONEY AND TWO FOR THE SHOW) \# (SS, THINGY, ONE, TWO,)

We have now created a form THINGY and replaced parts of We have now created a form THINGY and replaced parts of
it with segment gaps. Since each of the later arguments of SEGMENT STRING specifies a differently numbered gap, we will have gaps numbered [1], [2], and [3]. The gap [1] Will have replaced the word ONE, the gap [2] will have replaced the word TWO, and a lot of gaps numbered [3] will have replaced all the spaces in the form (since the fifth argument of $S S$ was a space). The resulting form is:
THincic
$[11][3]$ FOR[3]THE[3]MONEY[3]AND[3] $[2][3]$ FOR[$[3] T H E[3]$ SHOW
We can get it to print out interestingly by typing \#(CL THINGY, RUN, HIDE) (since after the call, the plugged-in form will still be in the forms storage.) This is printed:

RUNFORTHEMONEYANDHDEFORTHESHOW
or perhaps, f we use a carriage return for the last argument, we can get funny results. The call

$$
{ }^{\#}(\text { THINGY, NOT A FIG, THAT, [carriage return] }
$$

should result in
NOT A FIG
FOR
THE
MONEY
AND
THAT
FOR
THE
SHOW

In TRAC Language, every command is replaced by its result
This is ingenious weird and proceeds.

TEST COMMANDS IN TRAD LANGUAGE
There are test commands in TRAC Language, but like everything else they work on strings of characters. Thus they may work on numbers or text. Consider the EQ command (test if equal):

\# (EQ, firstling, secondthing, if so, if not)

where "firstthing" and "secondthing" are the strings being compared, and ifso and if not are the alternatives. If first thing is the same as secondthing, then iso is what the TRAC processor does, and ifnot is forgotten. Example:
\#(EQ, 3, \#(SU, 5, 2), HOORAY, NUTS)
If it turns out that 3 is equal to \#(SU, 5,2), which it is, then all that would be left of the whole string would be

HOORAY

while otherwise the TRAC processor would produce NUTS.
To most computer people this looks completely inside-
out, with the thing to do next appearing at the center of the test instruction. Others find this feature at-trac-tive.

DISK OPERATIONS

Now for the juicy disk operations. Storing things on \mid disk can occur as an ordinary TRAC command.
\#(SB, name, form, form 2, form 3...)
creates a place out somewhere on disk with the name you give it, and puts in it the forms you've specified. Example:
\#(SB, JUNK, TOM, DICK, HARRY)
and they're stored. If you want them later you say \#(BI, JUNK)
and they're back.
Because you can mix the disk operations in with everything else so nicely, you can chain programs and changing environments with great ease to travel smoothly among different systems, circumstances, setups.

Here is a stupid program that scans all incoming text for the word SHA ZAM. If the word SHAZAM appears, it clears out everything, calls a whole mother disk block, and welcomes its new master. Otherwise nothing happens. If you have access to a TRAC system for really want to work on it), you may be able to figure it out. (RESTART must be in the workspace to begin.)

RPT $\sqrt{\text { TER, SHAZAM, \#(TEST),(\#(EVENT)))\#(RPT). }}$

EVENT $\sqrt{\#(D A) \#(F B, M A R V E L) \#(P S, W E L C O M E ~ O ~ M A S T E R)}$

In this example, however, you may have noticed more parentheses than you expected. Now for why.

PROTECTION AND ONE-SHOT

The last thing we'll talk about is the other two syntactic layouts.

We've already told you about the main syntactic layout of TRAC Language, which is

\#

It turns out that two more layouts are needed, which we may call PROTECTION and ONE-SHOT. Protection is simply

$$
1 \quad)
$$

which prevents the execution of anything between the parentheses. The TRAC processor strips off these plain parentheses and moves on, leaving behind what was in them but not having executed it. (But it may come back.) An obvious use is to put around a program you're designing:

$$
\|(\mathrm{DS}, \mathrm{PROG}, \underbrace{(M(\mathrm{AD}, \mathrm{~A}, \mathrm{~B})}_{\text {safe }}))
$$

but other uses turn up after you've experimented a little The last TRAC command arrangement looks like this
\#\# ()
and you can put any command in it, except that its result will only be carried one level
**(CL, ZOWIE, 3, 4)
results in (using the forms we defined earlier),
the magic scan
The secret of combining TRAC commanda to that avery command, when executed, in replaced by its anawer;
and whatever may result is in turn executed.

There la an exact procedure for this:

SCAN FROM LEFT TO RIGHI
RESOLVE THE CONTENTS OF THE
\rightarrow RESOLVE THE CONTENTS OF THE (execute and replace by the command's result) STARTING AT THE BEGINNING OF THE RESULT,
KEEP SCANNING LEFT-TO-RIGHT UNTIL A RIGHT PARENTHESIS. - when you get to the end, print out WHAT'S LEFT.

The beauty part is how it all works so good.
An arthmetic example - so you get the procedure. (AD, 2, *(AD, 3, 4))
irst right parenthest
(2)
execute what's in the
$\&$ replace
(AD, 2,7) scan to next right parenthesis
execute $\&$ replace Ind no more parenthese print out what's left.
You might try this yourself on a longer example:
(AD, *(SU, $n(A D, 3,4), *(S U, 7,3), 1)$
Here is an interesting case:
($\mathrm{AD}, 1$)
There's no third argument to add to the 1 - but that's okay in T trac Language. 1 it remains
pULLING IN OTHER STUFF
The core memory available to the use is divided into

The Standby area contains strings of characters whith names. Here could be some examples
names atringa
(PPS, HELP: I AM TRAPPED IN A LOOP)O(CL, PROGRAM) GALOSHES

I MUSTN'T FORGET MY GALOSHES.
There is an instruction that moves thinge !rom the tandby area to the Workspace. This is the CALL natruction.
*(CL, whatever)
The CALL instruction pulls in a copy of the named atring to replace t , the call instruction, in the work area. The atring named in the call instruction also staya in the Standby area untll you want to get rid of it. Example:

*(CL, HAROLD)

would be replaced by
54321
Suppose we say In a program
-(AD, 1, (CL, HAROLD))
Then the result is:
54322
Now let's do a program type in to our TRAC processor

(CL, PROGRAM)

it should type
HELP; I AM TRAPPED IN A PROGRAM LOOP HELP; I AM TRAPPED IN A PROGRAM LOOP TRAPPED IN A PROGRAM LOOP
Indefinitely.
Why is this? Let's go through the steps.
We noted that in our Standby area we had a atring
(f(PS, help; I AM Trapped in a Program LOOp) (CL, PROGRAM)
The TRAC proceteor acans across it to the first right parenthesis. (PPS, HELP; I AM TRAPPED IN A PROGRAM LOOP) (CL, PROGRAM) and now executes this.

Mild-mannered Ca/vin Mooers steps into a phone booth, tears open his terminal, and

 \# (POW!) IT'S SUPERLANGUAGE!help; I AM TRAPPED IN A PROGRAM LOOP
so it prints that. II it had said
help, i Am Trapped in a program loop
the PRINT STRING command would only have printed

HELP

since a comma ends an argument in TRAC language.
Now, the PRINT STRING command leaves no result, so
It is vaporized; all we have left in the work area is

which is now scanned. But that's another CALL, and when is executed ty fetching the object called Procram, its
replacement in the work area is
*(PS, help; I AM TRAPPED iN A PROGRAM LOOP)"(CL, PROGRAM)
and guess what. We done It again.
(Another example of TRAC Language's consistency suppose It executes the command

-(CL, EBENEZER)

when there is no string called EBENEZER. The result is nothing; so that command disappears, leaving no residue.)

THE FORM COMMANDS
Let us be a little more precise. The Standby area seally called by Mooers "forms storage, " and a string -with-name that is kept there is called a form. One reason programs or arrangements that we may want to fit together and comblne. Thus they are "forms".

1. CREATING A FORM

To create a form, you use the DEFINE STRING command:
"(DS, formname, contents)
The arguments used by DS give a name to the form and spectry what you want to have stored in it. Example:
*(DS, ELVIS, 1234)
creates a form named ELVIS with contents 1234.

(Note that to get a program into a form without its being xecuted on the way requires some preparation. For this "protection" is used; see end of article.)

It turns out that Define string is the closest trac Language has to an asstgnment statement (as in BASIC,
LET $A=$ WHATEVER). If you want to use a vartable A,
say, to store the current result of something, in TRAC
Language you create a form named A.

- CDS, A, Whatever)

Whenever the value of A is changed, you redefine form A.
2. calling a form

As noted already,
"(CL, ELVIS)
will then be replaced by

1234

But a wonderful extension of this, that has n't been
nitioned yel, is
2A. THE IMPLICIT CALL.
You don't even have to say CL to call a form. It the
irst argument of a command - that is, the first atring inside the command parentheses - is not a command known
to TRAC Language, why, the TRAC procesar concludes that the firat argument may be the name of a form. So now t you type
*(AD, "(harold), (ELVIS))

$\int_{5}{ }^{\prime}$

It will firat note, on reaching the right-paren of the HAROLD command, that since HAROLD IS 54321 , yo ldently wanted this:

*(AD, 54321, 1294)
so that pretty coon It'll type for you

This anguage is marveloualy nuited to data baze managethent.
and the broad spectrum of "business" programming.
For large-scale sctentific number crunching, not so good
With one exception: "infinite precision" arithmetic, when people want things to hundreds of decimel places.

Chugga chugr

This implicit call to the trick that allows people to create heir own languages very quickly. In not very long, you could
reate your own commands - say ZAPp, MELVIN more; and while at first tt is more conventent to type in the TRAC format
*(ZAPP, *(MELVIN)
if is very little trouble in TRAC Language to create new ntaxes of your own like
ZAPP IMELVIN
that are interpreted by the TRAC processor as meaning the ame thing.

2B. Filling in holes.
Another thing the CALL command in TRAC Language oes is fitl in holes that exist in forms. Let us represent a hole as follows:
[1]
Now suppose there is a TRAC torm with a hole in tt, like . [WORD] $\quad[\mathrm{H} \mid \mathrm{IT}]$
$\frac{\text { Additional }}{\text { the form. }} \frac{\text { arguments }}{\text { Examples: }}$ in the call get plugged into holes in

call	result
(CL, WORD)	HT
(CL, WORD,	HOT
(WORD, A)	HAT
(WORD, ©O)	HOOT

Now, a form can have a number of diflerent holes.
et us denote these by
[1] [2] [3] [4] .

Perhaps you can think of other examples.
This illl-in technique is obviousty useful for program-
ming. If form contathe a program, tis holes can be made
to accept varying numbers, form names, text strings,
other programs. Example: Suppose we want to create a
new TRAC command, ADD, that adds three numbers inatead
of just two. Fair enough:
ADD]
This brings up another example of how nicely TRAC
Language works out. Suppose you have the following in
torme atorage:

Try acting this one out with pencil and paper. Suppose you ype in
(ZOWIE, 5, 7)
It happens that the arguments 5 and 7 will be panoed neatly nom zowie to ziP to 2AP to the final execution of the AD and the Magte Scan procedure of the TRAC proceswor.

the sleeping giant TRACC Languye

A mild-mannered man in Cambridge, Massachusetts, who owns his own very small business, is the creator of one of the most extraordinary and powerful computer languages there is, though lots of people in the field don't realize it. The language is fairly well-known among professionals, but its real power is hardly suspected.

If BASIC is a fairly conventional programming language, strongly resembling FORTRAN, TRAC (Text Reckoning and Compiling) Language is fairly unusual.

The name of it is "TRAC Language," not just TRAC because it's a registered brand name (ike Kleenex Tissues) Within the rules, the word 'TRAC" is an adjective and not a noun. Thus TRAC is its first name, Language is its last; so we can refer to "TRAC Language" instead of having to precede it with the.

It is included here for several reasons.

1) It is extremely easy to learn, at least for beginners Experienced programmers often have trouble with it.
2) It is extremely powerful for non-numeric tasks. In fact, it is ideal for building your own personal language.
3) It offers perhaps the best control of mass storage, and your own style of input-output, of any language.
4) It is superbly documented and explained with the new 'The Beginner's Manual for TRAC Language,' which is now available.
5) It is likely to catch on one of these days. (Some large corporations have been investigating it extensively.)

It is not so much the basic idea of TRAC Language, but the neatness with which the idea has been elaborated, that is so nice.

As a side point, here is an important motto for thinking in general about computers (and about other things in general):

MAKing things fit together well
TAKES A LOT OF WORK AND THOUGHT.
Let Calvin Mooers' TRAC Language be a shining example.

TRAC Language is great for creating highly interactive systems for special purposes, including turnkey systems for inexperienced users and "good-guy" systems. It combines this with good facilities for handling text, and what is needed along with that, terrific control over mass storage. It is also excellent for simulating complex on-off systems; rumor has it that TRAC Language was used for simulating a major computer before it was built.

Against these advantages we must balance TRAC Language's less fortunate characteristics. For numerical operations it is extremely slow, if not terrible, compared to the most popular languages. The same applies to handling numerical arrays and controlling loops, which are comparatively awkward in TRAC Language.

Finally, many programmers are incensed by the number of parentheses that turn up in TRAC programs; in this it resembles the language LISP. But this is an aesthetic judgement.

The TRAC Language has been thought out in great detail for total compatibility of all parts. (Moreover, by standardizing the language exactly, Mooers heroically assures that programs can be moved from computer to computer without difficulty.)

- TRAC is a registered service mark of Rockford Research, Inc. Description of TRAC Language primitives adapted by permission from "TRAC, A Procedure-Describing Language for the Reactive Typewriter", copyright (c) 1966 by Rockford Research, Inc.

[^6]In the well-thought-out ramifications of its basic concept the TRAC Language is so elegant as to constitute a work of art. It beautifully fulfilis this rule:
" \because.. the facilities provided by the language should be constructed from as few basic ideas as possible, and ... these should be general-purpose and interrelated in the language in a way which avolded special cases wherever possible." (Harrison, Data-Structures and Programming, pub. Scott, Foresman, p. 251.)

The fundamental idea of TRAC Language, which has been worked out in detail wifh the deepest care, thought and consistency, is this:

ALL IS TEXT.

That is, all programs and data are stored as strings of characters, in the same manner. They are labelled, stored, retrieved, and otherwise treated in the same way, as strings of text characters.

Data and programs are not kept in binary form, but remain stored in character form, much the way they were originally put in. The programs are examined for execution as text strings, and they call data in the form of text strings.

This gives rise to certain interesting kinds of compatibility.
a) Complete compatibility exists in the command structure: the results of one command can become another command or can become data for another command. ALMOST NOTHING CREATES AN ERROR CONDITION. If enough information is not supplied to execute a command, the command is ignored. If too much information is supplied, the extra is ignored.
b) Complete compatibility exists in the data: letters and numbers and spaces may be freely intermixed. Special terminal characters (ike carriage returns and backspaces) are handled just like other characters, giving the programmer complete control of the arrangement of output on the page.
c) Complete compatibility also exists from one computer to another, so that work on one computer can be moved to another with ease. By the trademark TRAC, Mooers guarantees it - an innovation.

COMMAND FORMAT

A TRAC command has the following form. The crosshatch or sharp-sign is the way this language identifies a command's beginning.
\# (NM, arg2, arg $3, \arg 4, \ldots)$
NM is the name of any TRAC command. It counts as the first "argument," or plece of information supplied. Arg2, arg3, etc. are whatever else the command needs to know to be carried out.

We will look first at examples that use the arithmetic commands of TRAC Language, not because it is particularly good at arithmetic, which it isn't, but because they're the simplest commands. The arithmetic commands are $A D$ (add), SU (subtract, ML (multiply), DV (divide). Each arithmetic command takes three arguments, the command name and two numbers. Examples:
\#(AD, 1, 2)
is a command to add the numbers 1 and 2.
\# (SU, 4, 3)
is a command to subtract the number 3 from the number 4 .
\#(ML, 632, 521)
is a command to multiply 632 by 521 .
\#(DV, 100, 10)
is a command to divide 100 by 10 .
Now comes the interesting part.
The way TRAC commands may be combined provides the language's extraordinary power. This is based on the way that the TRAC processor examines the program, which is a string of character codes. Watch as we combine two AD instructions:
\#(AD, 3, \#(AD, 2, 5))
The answer is 10. Miraculous :
How can this be?

- A comma ends an argument in the Trac language? Ah, that all arguments could be ended so easily. -My grandfather. OF THE EMPIRE STATE BUILDING

This will cause the following to happen
Program typas:
HOW OLD ARE YOU?
Program types:
your age is . 5 times the age of the empire state building.

The IF commend
The IF command is a way of teating what's stored in a veriable. Exemple:

B9 IF M $=\mathbf{4 0}$ then 63
This tente variable m to see if it contains the number to if M is indeed $\mathbf{4 0}$. the program follower fumps to line 63. If not. it goes right on and takes the next higher instruction afer 83. The if can test other relations than equality. fncluding "less that." "greater than," not equal." "le
than or equal to." etc. For instance.

89 IF Q 7 then 102
will send the program follower to command 75 if variable Q contains a number less than 7. Note that different BASICs for different computers may have slightly different rules here.)

The BASIC language. developed at Dartmouth, must not be confused with the undertying binary languages of individual computers (see "Rock Bottom," p.32). These underlying codes are called "machine languages" (or, in a dressed-up form. easier to use for programmers, "assembler language") These are the basic lenguages, different for each machine. standardized, simple beginner's Ianguage

another profound exemplary program
 IF $2=0$ GOTO 74
$\rightarrow \begin{array}{ll}63 \\ 74 & \text { COTO } 10 \text { PRINT "TMME TO GO HOME." }\end{array}$
The program will start typing thusly:
25 bottles of beer in the wall
24 bottles of beer in the wall
and so on. untul 2 has reached 0 ; then it will type
0 bottles of beer in the wale
TIME TO GO HOME
and then it will stop
You will note that this program. like the one that printed "HELP. I AM CAUGHT IN A LOOP." has a loop. was an endless loop, which repeated forever. This loop, however. is more well-behaved (oy some people's standards). In that it ellows an eacape when a certain criterion has been reached - in this case, printing a line of text 25 timea with variants

The reason we are able to escape from this loop is that we have a test instruction, $1 F$ statement number 62

It in very important for the programmer to include leste which allow the program to get out of a loop. This be couched as a motho, viz.
leak before you loop
an automatic loop
Indeed, for people who are big on program loops. BASIC provides a pair of instructions which handle the program loop completely. These are the FOR and NEXT
instructions. We won't show them here, but they're not very hard. Using the for command, you can easily direct the computer to do something a million and one times, say. hat progem exhilarating. You can even ililion times resulting in a program in somethat would be carried out over a trillion Imes. All in a short program! But of course this is juat powar on paper; we want our programs to be useful, and tinith their jobe in the present century, and so wuch fighte
are jum mental exercires.

FAST ANBWERBACK WITH BASIC (in wome versions)
If you want a cat anawer to a numerical queation.
you can do it without the line numbers. typing in
PRINT 3.1416 * 7124
will caume BAsic to print the anawer right out and forge
the whole thing
text strinos in basic
The doluxe veraions of the Dartmouth BASIC language have operations for handing text or what computerfoik call "stringn", that fe These operations tend to begin with \& (atanding for "tiring"? and there's no room for them here

But what they mean ta that BASIC cen type letters, count the nouna in Gone with The Wind, or pri
God.
and can save some companies a lot of money
BASIC is a very serious tanguage. Advanced veratons of BASIC have insiructions that allow users to put in alphabetical from disks or tape. In other words. BASIC can be used for the fairly simple programming of a vast range of proble and "good-guy systems" mentioned elsewhere. Complete basic systems allowing complex calculations can be had for perhaps \$3000: a general-purpose computer running BASIC with cassette or other mass storage, for buaineas or other purposes, can now be had for some $\$$ nooo. Allowing in BASIC, simple systems can be created for a variety of purposes that aome companies might say you needed a hundred-thousand-dollar system for.

This is serious business. Languagea like BASIC nust be considered by people who want aimplo ayatems oo do understandabie and that don't disrupt thetr companite or thetr

This has been a very hasty and brief presentation in which I have tried to convey the feeling of this importan language. If you have the chance to learn it, by all means do.

SOME FUN THINGS TO TRY IN BASIC
Write a program that prints calendars.
Write a program that converts an input number to
Roman Numerals.
Write a dialogue system that welcomes the user to he sanitarium. asks him questions, ignores the answer and insults him. (Use the INPUT statement for receiving can all be stored in. WHERE TO GET IT
(Features of the BASIC languge vary considerably rom system to system. Which ones offer the highly desirabl alphabetic commands and mass storage have to be checked out individually.)

BASIC is offered on many if not most time-sharing services. so you can use it from your home on a terminal. (But note that this can be expensive and even dangerous, if you're paying yourself; there are not presently adequate cost sareguerds to prevent you from running up huge bills.)

BEST BUY? Rumors persist of a time-sharing service omewhere that offers BASIC for $\$ \$$ an hour, totat, with disk torage thrown in. I have not been able to verify this

DEC offers minicomputer-based systems which timeshare BASIC among several terminals simultaneously. (But you have to buy the whole big system.? The ones that run on the PDP-8 are marketed mainly to schools, and for Their multiterminal system for the PDP-11 is called RSTS (pronounced "Hisstiss,") and is marketed mainly to businesses.

Hewlett-Packard offers BASIC, I believe, on all of its minicomputers. Of special interest is an odd compute program in BASIC a's actually a microprocesoor: see p. 44.)

Many other minicomputer manufacturers now offer
BASIC. Data General's NOVA is one.

bibliography

Kemeny and Kurtz, 日ASIC Programming. Wiley, 1967
DEC's Edusystem Handbook is a very nice introduction to BASIC, quite pleasent and whimsical: it may be a groad introuchen even if youre using other people's
BASIC systems. In's $\$ 5$ from DEC, Communications Services. Perker St., Maynard, Mass. 01754

There is also a programmed text on BASIC by Albrechi (published by Wiley). For those of us who freeze at numerical-looking manuals. programmed texts can take away a lot of anxiety
 This book has evidently veen put together by the People's $\$ 1.19$ from Dymax, Box 310 . Menlo Park. Cal. 94025.

sasic is a good example of an "algebralc" type of tanguage, that is, one formulated more or less to look like high-school algebra and permit easy conversion of certain algebral
The most widuly-ued lengunge of this type is FORTRAN (see p. $3 \mid$). Thus BASIC is oftion reforred to as a "Fortran-typa language. the batile-- is that a line of BASIC or FORTR directa a certain event to take place, while - statement in algebra just describes relations.

The strange reaemblance between the deacriptiv language (Foriran or Basic) it that algebraic operations (which are just recombinations and reatatementa) can be mimicked by the computer language, and inls carly byasion of mathy computerfoik led to traking the computer language look like a descriptive the equals-sign to mean "is replaced now by. In hindaight this wan a ridiculoua idea: mome of the more recent languages (such as APL) use a leff-pointing arrow inateat of an called for, rather than a relationship being described.

ARRAYS

an important da a dadure

(available in BASIC, APL and many other languages)

Arroys are information setups wh numbered postions. The positions can contain all sorts or other datu, depending on the data siructures allowed in the language.

TWO-DIMENSIONRL ARKAY

ThK̇EE-DIMRNSIONHL KRRKY

A one-dimensional array is like a row, a twodimensional array is like a tabletop, a threedimensions you can't visualize

Arrays are handy for working with a lot of different things one at a time. They can be given names just like varinbles.

Suppose you have a one-dimensionat array numed SAM. Then in a program you can usually SAM (3). Better than that: you can refer by turn o every element of SAM by using a counting vuriable and changing its value. SAM (JOE) can be any one of the elements of the array, if we set the value of JoE, the counting variable, to the numbe of the position we want to point to

For arrays having more than one dimension the principle is the same. You may refer in a progrum to any space in the array by giving a
number in parentheses, or subscript, speciryin the space's position in each dimension. Suppose you have an array named PRICES, which gives he prices of, sey, various sizes and brands of TV sets

Xer Andy PRCES

This is PRICES (3.2)
because it's the item in row 3, column 2.

Suppose you have a two-cimensional array giving the telephone numbers. sularies and ages
it several different employes of a company. You have decided to call the array WHAM

You can refer to mny single entry in this array at GAM (IKV, JOE), where IRV and JOE are two counting variables you've decided to aet up.

If you aet IRV and JOE both to 1 , which
WHAM (IRV, JOE) is really whan (1,1 , when rofers you to the telephone number of employee A. If you chenge joe to 2, that gives you wham(1.2). Aiving you

These are just the mechanics. What you choose to do with this surt of thing ty your ow orrair. Counding they're stored) to called indexing

When you type in a program, the BASIC processor will do certain things to it (actually cook it down) and store it in core memory

Every time you change one of the lines of the program the BASIC processor will insert, delete or replsce lines as you have commanded, then rearrange whatever's left accordingly, order of the line numbers.

Then when you tell the processor to start the program. by typing (with no line number)

RUN

the processor will start the program going at the command with the earliest line number, and your instructions will be executed according to the rules of BASIC.

Now we will consider some of the commands (or statements) of Basic.

These two boys had never seen a computer before, but 1 loaded it up with the BASIC language processor showed them a tew bosic commands and told them to turn it off when they were through

1 got back ten hours later and they were still at it. Too bad kids have such short attention spans.

variableg

The BASIC language, like a number of other languages allowe you to set aside places in core memory and give them names. These places may hold numbers. They can (or not done), to hold answers, numbers to test against, numbers to multiply by and so on.
in BASIC, these places are given names of one alphabetical letter. That means you can have up to 26 of them. Examples:

A E $\quad 1 \quad 0 \quad u$ sometimes Y even X
Because these named spaces in memory may be used mething like the way letters are used in algebra, we call them variables. In fact, each one is a place with a name

If you ube the namea B.C and D for variablee in your program, the BASIC processor will automatically aet up places for them to be atored.

The END command
The END command in BASIC eimply conaiste of the word END. It must come last in the program. Therafore it muat have the highest line number. Example

99 END

The Print command
Whenever the program follower geta to a PRiNT command it prints out on the terminal whatever in specified. Example:

97 PRINT "HANL CARSAR. BIRD THOU NEVER WERT"
When and if the program follower gets to this command,
he terminal will print out
hall caesar. bird thou never wert
The GOTO commend (pronounced "Go $\mathbf{2 "}^{\prime \prime}$)
The GOTO command tells the program follower the number of the next command for it to do, from which it will go on. Example:

$$
62 \text { GOTO } 99
$$

hich means that when a program follower gets to command 62. it must next jump to 99 and go on from there, unless happens to be the END statement.

A SIMPLE SAMPLE PROGRAM
These are enough commands to write a ample program
43 PRINT "HELP, 1 am CAUGHT IN A LOOP"
67 GOTO 43

The program will start at the first instruction, which happens in this case to be instruction number 43. That happens in this case to be instruction number 43 . That
one prints a message. The next command, by line number is 67 . This tells the progrem follower to go back to 43 . which it does.

43 PRINT 67 GOTO 43

 68 ENDThe result is that your terminal will print
help, i am caught in a loop help, I AM CAUGHT IN A LOOP help, I AM CaUGht in a Loop

Interminably, or until you do something drastle. It never ets to the END statement. (Two strategies for doing something drastic are dually to hold down he CON RHL butch and if you have them, and type P. One of these usually works.)

The LET command
The LET command puts something into a variable Example:

43 LET R $=2.3$
What is on the right side of the equale aign in the last statement. this case 2.3, is stuffed into whatever location of core enory is designated on he loh aide, in that case a ple known to you only as R . With the result that someplac
区 2.3

The LET statement is an example of an assignment statement. which most computer languages have: an assignment statement ssigns a specific piece of information (often a number but often other things) to some name (often standing for a particular place in core memory).

The LET command in BASIC can also be ueed to do arithmetic. Example

14 LET M $=2.3+(12 * 7999.1)$

The asterisk has to be used for multiplication because traditionally terminals don't have a times-sign.) basic will work this out from right to left and store the result in M.

The INPUT command
The INPUT statement aaks the person at the terminal for a number and then shoves it into a variable. Example:

41 INPUT Z
which causes the terminal to type a queation mark, and walt. Whan the user has typed in a number followed by a carriege return. the BASIC procasar stifbin. Here to a program using the INPUT statement

COMPUTER CONGUASES
Fe what make computers go 'round
If your computer only did one thing, press.

If your computer only did two dozen things. Without variations, then you could one of the keys of the terminal. and that would be that.

But that's not what it's about
We have lots of different things that we want computers to do, and we want one commaid to work on different varieties of data, or
on the results of previous command. or even to chew on another command itself; and so a computer language is a contrived method of the commands to be entwined in a complex fashion

This means having rules the computer can

This means having basic operations that an be built into bigger operation (routines,

Thus a computer language is really programs together. Computer languages are built according to contrived sets of rules are limited only by the imaginglanguage has its own contrived system of
rules, and it may be completely different from the contrived rules tying together reasother computer language, (That's one cent computer languages, to show some of
the mad variety that can exist.)

Computer languages tend to look like nothing else you've ever seen. Thus com-
muter programs, which of course have to be written in these computer languages,
look pretty weird. Sone programs look look pretty weird. Sone programs look
like old train schedules (in multiple columns). Some look a little like print-
ted patty. In any case, a CompuTik pro-
GRAM NO MORE LOOKS LIRE ITS RESULT THAN THAN THE WORD "COW" LOOKS LI NE A COW. book is of the central concepts of this dynamic entity which somehow follows a
program. Snell, EVERY LANGUAGE HAS A PROGRAM FOLLOWER FOLLOWING ITS OWN MARTI-
CULAR RULES. These rules are contrived for convenience, suitability to a purpose,
and "aesthetics" of a sort-- often some form of stark compression. (The program
followers wired into computers are some What more akin to one another; see "Rock MUTER LANGUAGE ALLOWS LOOPS, TESTS AND DEVICES, as mentioned on p. 11. Beyond that the 4 differences are incredible.
ple is this: it's not that computer neolily know so much, but they can adapt to a
whole new world of possibilities more
quickly.

PROGRAMS VS. SYSTEMS: necessarily interacting with the outside world:
a "system" involves a whole setup, of which the computer and a program in it are jugal the central thing

THREE
COMPUTER LANGUAGES FOR YOU

Everyone should have some brush with computer programming, just to see what it is
and isn't. What it is; casting mystical spells in arcane terminology, whose exact details
have exact ramifications. What it isut talking or typing to the computer in sums: way mat re.
quires intelligence by the machine. What it is: an intricate technical art. What it isn't: science. Why three languages" Because one would
took too much alike. Only by perusing several do you get any sense of the variate they take.

These three languages make it possible
rincinle for you to learn computers in principle for you to learn computers
with no coaching. All you need fin princeBled $)$ is your own terminal, and time -sharing
accounts with firms running basic ghost of
 One. they these three? Several good reasons, means that you could in principle get a terminal over the telephone. But this is expensive. and at worst fraught with accidental financial Nevertheless, it should be practical and indexpensive fairly soon.

These languages have been chosen be-
they are important, very different from each other, very powerful, influential five from time sharing syce field, interact-
suitable for making in very suitable for making intiratlo, powgrans
and "good-guy systems.: Each fay be used to create programs
for science, business or recreation.

 from the terminal; interactive prog tang
are those which interact with users, which
is different. However, these languages are Another reason for these three: they
represent, in a way, several major types. BASic is in widespread and fairly standard everywhere. Moreover, it looks rather like computer language.

TRAC Language, though weil-known among researchers, has mighty powers that are not 50
well known. Moreover. it achieves its powers well known. Moreover. it achieves its powers
through the simple and highly consistent following of a few simple principles, and is thus both very
easy to learn and an elegant intellectual triumph for its inventor.

Moreover, it if a su-called "list language. meaning that it can handle information having important feature to those of us interested in computer applications like picture-making and text handing, which use amorphous and busy
types of data. (See "Data Structures," pp. $2 G^{+}$.) APL is another elegant language, also by a very thoughtful and inspired inventor.

In the contemplation of these three langrunges you may begin to see the influence of
the individual human mind in the computer field quite contrary to the stereotype. I would like represents somebody's individual personal acthwhement, and is in turn a foundation upon their own.

Iwo of these languages porn: the
creation of interactive : on a line -byline basis: :
Language (pp. 1g-21)
user types in, react
permits you to program user-level systems
that are even more responsive.
IF you'te
not a test. Flip the pages and look at the examplies. (In particular, you might lock for the
same program which appears in each language: a program to cause the computer to print
"HELP, I AM TRAPPED IN A LOOP" forever.)

This book is organized so you can look at it or skip it in only order, so there is no particular reason you have to fight through But if you want to study these languages. by all

Languages that can be used from terminal beer of other popular on-line languages: Joss (the original), FOCAL. LOGO. SPEAKEASY. I'm
just sorry there's no room for them hers. Some popular noo-interactive languages
are briefly described on pp. 30 - 51 .

The best way to start programing is to have a terminal running an Interactive language,
and a friend sifting nearby who already knows the language and ina zomething else to do and a fiend sitting nearby who already knows the language and ins something else to do
 And it nd yourself writing proqzans that work. THE BEST WAY TO LEARN.

"COMPUTE TEXT EDITORS"

The Moving Finger writes; and, having writ.
Hover on: nor all your Piety nor Wit
Shall Jute it beck to caner! hall a Line,
Nor all your Tears wash out a Word of it.
Khayyam/fitzgaratd

Numerous interactive programs exist for editing text at computer terminals-. in other
words, for doing what Magic Typewriters do, but
using a computer instead of a small specialpurpose machine. Unfortunately most of tine systems are
dreadful. Dreadful, that is, for ordinary human beings. What computer people seem to
chink of as appropriate systems for handing tox are totally unsuitable for people who dire
and think a lot about text, although they may
be good for Such systems allow you to insert text
(with some difficulty). delete (with some diff
faculty), and rearrange (maybe). Ordinarily the user must learn an explicit command language, some system of alphabetical
commands that have to be typed in to effect any
change ty,
is good
 puler's core memory. The ard if otcupl
the core memory is called a core buffer.
The program generally gives the user an in-
aginary "pointer, i marker specifying what point
in the text the program is currently concerned with.
 example ff text is inserted, i will go into
the place pewsently pointed at. Many of the commands are concerned with con-
trolling the current position of the pointer. moving it backward or forward by a specific fum-
bor of characters \{including punctuation marks and spaces) or lines (known to the program by the
carriage-return codes interspersed in the text).
\square
sue
god.
beth

COMPUTER-SIPLE TEX SYSTEM.

TWO KiNDS OF TEPMINLLS

 obicreen. But th ton'thicenar much greater outalde than inside.)

Actuaily the fundamental distinction between
 of organization which was adopted by "the indus try, "t under the blessing of the National Bureau
of standarda. But tem has polntedy Igrored this

The principal terminal of the ASCut type. In theer numbers, is the model 33 -ASR Teletype (Irrademark of Teletype Corp.), so this kind of torminal ts called the "33 ASR type," or "Telety
type," or wo even nay a given terminal "looks type, "or mo even nay atven to
to the computer like a Teletype.

Iem, however, seems to like chenging its systems sound a 10 t. for instance changing its
codes when it brings out a new computer. (Fortunately. it it ust happens that they alaso sell adap-
ters beeween them whew.) So tims-wpe terminals lers between them. Whew.) So tam-type terminals
are difterent by design. There is one main type, however. exern-
pitied by the IBM model 2741 terminal. Thus we say a terminal is an "IBM-type" or "2741-type"

Both Teletype and IBM-type terminuls come in either videm-gureen or p
trom a variety of manulacturers.

Indeed, even the Selectric (IBM trademarky Teletype-type terninals.

There is a very important performance difference between Ascli and IBM terminals. The Ascul terminal can send each charseter typed by the user-- each "keystroke"- to the computer
immectiately. This mens that highly responsive progrants can be written, which examine the user's Appur and can reply initing the user types.
 charfacter to be typed by the user to make it the
computer the the. This locks the keyboard so the
permon cant Us. omething. ending with its own "unlock" sienal that makes it the person's turn again

Why this unwieldy design? Supposedy it

 is conicerneed. Justi ast the card reader reads Punched cards till the lisi one is done. the fiMM until a "finished" condtion is reached.

SOME TERMINALS

YOU MIGHT LIKE.
Note: there are hundrade of types and ands of terminals available. These are just some thoughts.

printing terminals.

best buy? The model jb ASR Teletype IIves you upper and lower case, and is otherwise similar to the standard model 33. 570 a month from RCA Service Company, Data Communlestions Div.
(offices in tnajor cities); $\mathbf{s i s} / \mathrm{mo}$. for the coupler. 30 -day cencellable but costs $\$ 30$ to put in, $\$ 24$ to take out.

There is a cute terminal that behaves jus Like the 33 ASR, but is faster and uses NCR The Extel Series A teleprinter from Extel Corp 310 Anthony Trall, Northbrook, III. 60062.

If you like Selectrics, but want to go to AsCli there is one weird possibility.
a firm called Tycom Systems Corporation (26 Just Road, Fairfield NY 07na6) offers an interesting alternative. It happens that all Selec(ries (anyway. Model I and Model i) have a seam be unscrewed into two sections. Clever Tycom! They make a device which fits between, looks to the bottom like the top of the Selectric. and looks to the top like the bottom. Also, it turns the Selcetric into a terminal, receiving ASCII code causing the computer to type them, or sending ou what you type to the computer in ASCu.

Curiously, tBm has given its blessing to this arrangement, meaning you can have this sandwich deal done to a Selectric you rent from
IBM, and serviced under beefed-up IBM maintenance agreements ($\$ 72$ per yesr, or $\$ 16.50$ per hour a5 of 1970).

The earlier video terminals came with dreadful styling, like a 1940 s science-fiction movie. But as an example of how the market is
developing. one of the handsomest video terminal is the $\$ 1300$ Mini-Tec from TEC Ineorporated. 9800 North Oracle Road, Tucson, Ariz. B5704 It comes covered with wood-grain conlact paper and looks very nice. (You should have seen their early models.)

The Hazeltine 1000 video terminal rents for $549 / \mathrm{mo}$, on a 1 -year contract. LOWER-CAS OPTION; moden and coupler apparently not included. (Hazeltine, Greenlawn. NY 11740

If you have no objection to ITT. they offer a portable video terminal with built-in modem and coupler, the Asciscope. for $\$ 65 /$ month. Supposedly there's a lang walting list. (ITT Data Equipment end Systems Division, East Union
Ave.. East Rutherford, Nd azoz3.)
see Kustom Electronies. Inc. (aren't they the rock-ump people?, Data Communications Division 1010 West Chesthut, Chanute, Kansas 66720 . the moblle constabulary of Kansas City (Mo.) Polm Beach and Nastivile. (Communications.
Jan. 73. ad p, 47.) Now. of course, you'll need Jan. 73 . ad $p, 47$.) Now, of course. you'll nee
a whole gitionary radio setup to min tat

miscellaneous
Short-tenious firtis rent terminals, some on a are bad news, keeptng up their equipment bad! and offering poor s

The day will come, let's hope it's soon that you can rent a terninal overnight or for
weekend like a movie camera. But till people get a sense of how far ard fast things are moving.

IInfortunately rental people are hard to find since they are usually local, and the Yellow Pages idiotienlly lump together every possible form or ennputer sales and service under "Data Processing Equipment and Supplios," and fow firms further Herere
criticized): Compuler Pienning a Supply, Chicago Vardon $~$ Associates. Dailas

A good outfit, that rents both ASCII and BM-type terminels of their own menufacture, is Andorson Josobson Co. (1065 Morse Ave., Sunnyvale, Cniff. 94086, and major cities). They rents for obout 5100 a month (about the same as the standard 1BM 2741) but is portable.

To provide a memory whith your ASCll or IBM IBM-type terminai, an odd machine called the Teentran 4100 (about 51000 from Techtran Indusries, $581 /$ Jefferson Rd. . Rochester, NY 14623) cul
be used for offine storage. It uses a magnetic be used for offine storage. It uses a magnetic
cassette. Here are some things you can do with
type stuff into the Techtran.
later squirt it to n computer at high speed ive stuff from a computer at high speed.
ister type it back automaticuly on ieter type it back automaticully on
type into the Techt
have it typed baek automatically -:no computer
The question of whether the Techtran can be used
It happens that Anderson Jacobson (above) will rent you their 2741-type Selectric terminal. with a Techtran, for about 5220 a month lotal But they won't rent the Teehtran separately.

A 2741 -type Selectric terminal with memory offering these same capabilities, is now available from IBM: in is the Communicating Mag Card Executive (CMC). Since the Mag Card Executiv to which they have added the communicstion Cesture, costs over $\$ 200$ a month, tigure the
communication feature could cost another $\$ 10$ or so monthly, or probably half again as mueh as the Anderson-Jacobson.

Honeywell (Honeywell information Systems Wellestey Hills. Mass.) has recently made "standard terminals" in their systems. This may be the adaptation developed at Mit to do Bralle on the 33 ASR.)

For those of us itterary types who want upper and lower case but are sluck with 33ASRs, Data Terminals and Communications. Campbell, California.

II you're serlous about keeping up wit developments in the terminal area, you might
want to subscribe to Terminals Review ($\mathbf{S g} \mathrm{gh} / \mathrm{yr}$.
 highly spoken of by Datamation. (GML Cory.
594 Marrott Rd. Lexington, MA
02173.)
 minals and fancier pictorial displays-- see nip postpald from Datapro Peaearch Corp. One Corporate Center, Route 3B, Moorestown. NJ OB057.

video terminals without the video
A very hot item right now is a terminal called the "Digi-Log"actuaily several different
models666 Davisville Rd., Willow Grove, Ps. 19090.

This device fits in a briefcase. Basically it is a keyboard with a socket for the phone. drop the phone handset in the slot, and clip the wire to the antenns of a TV set. Presto! On the TV set dippers what you and the computer typ at each other.

This is especially good for travelling salesmen to communicate with their offices and ordering system via time-sharing computer) road. Also for people who want to show off the remote computer systems.

Disadvantage: only 42 characters per line which is awkward for some things, such as programming in Fortran.
Price: $\mathbf{S 1 z 0 0}$ to $\$ 1400$. They also lease. a
month (3 years)

Afso evailable on rental, supposedly, from Westwood Associates, Inc., 50 Washington Terrace
East Orange, NJ 07017 . Ann Arbor Terminals. The (Ann Arbor Mich.?) is said to offer a similar unit that is very nice

The equivalent IBM-type terminal-- keyboard. coupler and clip to the TV-- is the IPSA-100.
offered by I.P. Sharp Associates. Inc. (Bridge Adrinistration Building. Bridge Plaza, Ogdensburg NY 13669). Unfortunately in's much larger than
the Digi-Log- it comes in a medium--- and more expensive ($\$ 1700 \mathrm{up}$). However. they offer the APL character-set (see APL under "Magic Languages," $p .2$ D as an option-- even a modet with both normal and APL character-set
kecently, of all things, plans for a do-it yourself unit of this type were announced in a popular electronics magezine (Don Lancaster. "TV Typewriter." Radio-Eiectronics, Sept. 1973 which are available for $\$ 2$ from TV TYPEWRITER Radio-Electronks. 45 E. 17th St. . New York NY 10003

Supposedly this can be bull for "around $\$ 120^{n}$. Spobsoly a deat more- if you are a skilled
electronics builder or technician. But that looks to include a great deal of labor.

The finished unit holds up to 32 characters memory can be added. to hold a second alternative screenful.

Upper case onty

TYPE RIGHTER: The Megt Typeriters

a number of different systems are conim:
on the narkez to aid you in error-free typing IBM would have you call these "word processing systems, "since that makes them sound
of a- aiece with their dicraation equipmont. Ac.
t tuar they're text regurgitation systems, but
let's just call then Magic Typemiters. Prices of these things tend to run between
$\$ 100$ and $\$ 250$ a month.

Generally these are being sold as secre-
al aids, partly because they tend to be too
 justify the

Such s ;
the
A typeuriter, connected to some sort of
nagnetic memory, suth as a tape, coated
card
$\frac{\text { edting carculter, and which responds to }}{\text { various acts. by the uset. }}$
WHAT THEY 00: allow you to type stuff in, which
is both typed on the paper and at the same time

Trsc). Pro ins: : TrSC f fromuc
iric fomposer,
complications complications welib be
selectric. lven nore as MTST.
 a compul
writes
hnow wh

 O1iverti has one
cessing System. Their
they say, 150 pages of
Two other outfits
and lintype.
Me.:nops! Here come

Interactive sistems

Ssod to be that ordinntry poopichnad deal with onputers by filing out intiricate
 no longer.
Ayway, no longer necessary.
Computer systems can now give you action
Citenent-- and explanations. This is done through the magic of the
Tepminal. Terminals come in two consicus. flavors (typewriter and screen or conspicuous tube" flavors (typewriter and screen or boob tube
and also have two less-noticeable divisions and also have two iess-noticeable "Theletype" or "industry" versus "type.") Anywsy, a terninal is sonething that
lows a person and a computer to type at each Now, computers sre nerely gadgets for
twidiling information. They no more understand English, or human psychology than
pupies can read music (See "Artificial inpuppies can read music. (See Artificial in-
telligence, p. $12-15$, But the computer's prog
ram can, for instance, ditect the computer to type out a simple question, and conpare the
user's answer with a simple set of alternatives For oxsmple, ssppose the user is visiting a hos
pitai. A copputer cansign him in without the abrasiveness of a receiving nurse, and with far
are patience. The following night be a sample more pation (ilere the computer types what's in
dialogund
caps, and the usert replies are in lower-case.) do you have an acute pain? ($\mathrm{Y}, \mathrm{N}, \mathrm{dK}$) YOUR ANSMER IS: DX FOR "DON'T KNOW." DOES THAT MEAN YOU' RE NOT SURE
WIIAT ACUE: MANS? (ANFER A) A PAIN COMES AND COES? (ANSWER B
YOU HAVE A PAAN SORT OF ON THE YOU HAVE A PAIN SORT
BORDER? (ANSWER C) is THIS PAIN IN AN EXACT PLACE YOU
CAN IDENTIFY?
$(Y, N, D K)$
d a converseractive system, of this in "converses" ith the user. The sectet, is that the alterna-
tives in the computer program sie few and caretives in the coaputer program sre
fully worked out beforehand: there are great pi
falls when there are too many alternatives. as falls when there are too many alternatives, f as
chen such conversational systems are used for teaching (see pp. DM 15-19).

Here is a straightforward example: a systen wish I had for balancing a checkbook. Noote
that the inner program for this conversational ystem could be writtent in any of the three lan uages presented later.

What program would you like to run? ckb CHECKBOOK PROGRAM STARTS. please bist the checks that have come in.
 prestmably bank is charging you . 60 for SIX CHECKS, ALISO MONTHOY CIIARGE
FIFTY CENTS (PLEASE CONFIRH). are there any other bank charges this
 GIFT EROM AUHT AGATHA, 14 MARCli,
$\$ 25.007$ TOTAL ${ }^{\$ 25.00 \%}$ OTATEMENT SHOULD BE $\$ 1753.21$. YOUR CURRENT FLIAT is $\$ 656.75$. DO YOU WANT

CURRENT FLOAT AS FOLLOWS

$\begin{array}{lll}\text { No. } & 247 & 12 \text { MARCH } \\ \text { SAM GRONK (REPAYMENT) }\end{array}$
TOTAL YOU DONE WITH CHECKHOOK PROCRAM?

> (The part shown above is easy. Thinking the ways for the user to correct his re-
out the ways for the user to correct his re
cords, andor the bank. is the tough part.)

COMPRAES THAT WILL SET UF Whole
Little gusiness systems
A number of companies make ninicomputers
(partial ist on p. 4$\}$); however, companies partial list on p. 43); however, companies computers may want to investigate companies
that will put together wiole business systens that will put together wiole business systean
for them around minis.
(It is hoped that one contribution of
This book will bo to give the reader a botter
deal of what to ask far.)
business are:
Genosis one Computer Corporation,
99
Park Are.. NY
10016. Appea
to use BASIC language (seo pp. 16-17) of corp. (offices in five major cit-
ies). own manufacture, using aranguage vhich " salesman telis me is "just
tike BASIC" (see pp. 16-17). Minimum setup inciudes display terminal
printorf computer and 6 -mililion-char-
acter disk, at $\$ 31,000$.

TERMNALS

Types of avaitable computer terminal
are dieouged in
the next gipread
 Helow: a butitpen hooked up to the the
computer at the chicugo circle canpua,
lniveraity of jlienois. University of rilinoi
What aach person doas at his terminal
is narmally indepandent of what any other p
 more buited to tima-
tharing can have larg
numbere of terminata numbere of torminal
ail ouer a tampue. all
compa
aee

USing a computer silould alnay A COMPUTER.
atto 2 for the new era:
THE NEW FRONTIER IN COMPUTERS IS
CONEETUULL SIMPLICITY AND CONCEPTUAL SIMPLICITY AND
People tho delight in intricacy are foing to have to learn some new tricks. Internal in. Motro 3 for the new era (to computer
people): making things easy is hard.
Mototo 4 for the new era
ANY SYSTEM FOR A STECTFIC PURPOSE minutes or less.
Anyone who has been taught the use of an airline reservation systen, may doubr this. an airline reservation syster, may doubt
Rut perhaps this book will clarify things

EASY yo use,
and friexdly.
 A FURPUSL IMPORTANT TO HIM: infornarion, sencral operations, recordikepping, and
responses to on-ljne users. But for sone reason this

```
1s A A good friend of mine, Jordan Young;
```



```
Jordan tells me that one of the nora,
Lumpartant people at jartmouth is a my thical
```



``` thinks he understands what you tull him
when he doesart, tends to hit the wromg keys on the terminai. and in genaral rends
to screw ur.
```



``` \(\mathrm{it}^{\prime}=\) to complicoted.
```

\qquad

YOUR FIRST COMPUTER COWTACT
 chillt, Jumpinese otd nudden crios. Suwat and fear and sukwardiners interferce vith your abiaity helping you.
it': partectly romal.
he most important computer terrs for the '70s Were are some phrasos that will count in the more and mare computer systems set up for on-1ine
connected to a functioning computer,
Note the the computer may be in the

nteractive connected, but iusponding to not just connected, but responding to
you. interactive systems and programs can respond to your choices and requests
clarify what they want from you, etc. remote referring to something far away, as dis tinct from local, right where you are.
A computer $\frac{1}{\text { can be either remote or local }}$.
(ront end (n.) your desk. front-end (adj.)
Whatever stands between you and a systen
A front end can be the terminal in your office, for example. A front-end progran
is one which mediates between
a user and some other system or programi perbaps
coliesting data for is by quizing you.
ledicated ser forly one use. a tis compute set up for only one use. A big compute
at a computing conter has to have many
uses; a lithe computer in your office uses: a dittie computer in your office
can be dedicated. Dedicated conputers
are now hidden in all sorts of things: cash regssters, for example (see "Micro
processors." er (adj.) P. 44)
turned on with a key. Especially,
curnkey sysems, smaj conputer systeas that can just be turned on (key or not)
and are fully sec up. ready to run,

reat-tine responding to events in the world as needed
it thout delays. Computer systems that conpredict the weather or respond to naive users are real-time. Systems that can carch up overnithe are non.
stupid tern referring to any object that
does more than act like a plain terminal.
The term is stupid because it confuses
distinctions. Some intelligent terainals
have extra circuits for various purposes
others contain their own minicomputers;
stili othors are ordinary terainals con.
nected to front-end prograns.
user-oriented
set up for "users"-- peopie who are not
programmers or inpur typists, but who
programmers or inpur typists, but who
actually need something done.
user ievel (n, fee user-1evel (adj,

thinking about computers but about the
sup
subject or activity the computer is sup
naive user (n.), naive-uscr (adj.)
person who docsn't know abut computers
but is going to use the systen. Naive
give
user systems and theare fort such people.

of. Though
idiot-proof
not susceprible to being loused up by a
naive The hostility in this term may in
some cases be real. Coaputer people
sogesinas forget, or do not wish to tol-
orate. the degre of confusion thar naive
uscrs brimg degie the keyonfusion that naive tis ati-
tude is not just their problem but every.

and-alone system
systen (regardiess of purpuse) whith
doosn't have to be at tached to anything
else. (May contain its orn conputer,

The minece of over-The-phowe terminats

YOU CAN HANG A TERMNAL EITHER ON A MINICCMPUTER (ree. ${ }^{36}$) OR A BIG CImputer (see r. Te).

12
LETS CALL A STALE A SPADE

In the computer field, the name thing: are often celled by different names dor instance,
the IBM 1800. a fairly ordinary minicomputer. is called by them the "IBM 1800 Data Acquisition
and Control System"), different things are and Control system"), different things are of hen called by the same names, and inklings can be
inside-out and upside-down versions of each other in extraordinary variety, funded, comp-
ter people may find this book intice-out, which is okay with me. Lite is o klein bottle.) Sorting things out, then, memes having a
few basic concepts clear in your mind and few bast c concepts clear in your mind, and of them.
what you 'vie seen probably masn't
"a computer.
Set out of your head the notion that nome one syuttom you'vo cen showed you what
 fret it's the same kind of heartbeat, but that's no help in dealing with them.)

Then what is it computer people know. you may ak, that leeds them to under tana new syateme quickly? Aha. Computer people
simply adjuat fatter to whole new worlds. be, "how would you do that at all?" if there is
 judgment, then maybe we can take those steps and program th om on a computer. Hut maybe we

Then there is the ides that a computer it
 null end can ming It back al you in new ar rent monte. Actually what must happen, to got
"questions" answered, ho the: here mum bo
 you named programs that will count and trace. or whatever. through the date structure in ways tracing and watching prograng to ger thant the date structure in way you watt. So you nasa a program *excepting input from a keyboard or whatever
horrible misunderstandings
Some people think of computers en thing: That somehow mysteriously digeol and matimille. all knowledge. "Just low it to the computer," is
the motto. But what you food into the computer the mono. But whet you toed into the comp
fut att there units there's \boldsymbol{I} program.
"How would you do that by computer?"

THE DARED LIR
"Computers ara rigid and inhuman."
a better approximation
People are sometimes ($\alpha 11$ too often)
rigid and inhuman. (Machines and
 "Rigid and inhuman" computer systems
sro the crenation of rigid and inhuman
people.
 insinidatee many, ipeosially those who have
barn told they do not have logical mind."

What io meant actually, is indeed important: out the exact ramifications of opocifio comb
nations of thenar, without skipping ot epa. But the other mode of thinking, the intuition
has te place in the computer field too. hat its place in the computer fold too.
whichever your habitual otvia of mind dompu
offer you food-- and utanaile-- for thought.

 or in the gears.
They salvage wear the clips,
of lease if they wear ties so at not to set pulled imit.
rotation machinery

SOME COMPUTER People
to distinguish among

 or what the plank
sh en do. C111 they work.

A waive user (no offence)
 creating programs to help hin to the frontier
of computing.

the automobile analogy (tore) "The Interstate was buaper-to-buaper,
but after we had lunch at the rest stop it
cleared up till we got to the tor cleared up till we got to the tollbooth
Then leary got lost on the interchange. road." hat to double back on the service road."
1905. How incomprehensible to someone from jerstand it. That's how it is with conRulers.
Computer talk sounds so strange and
incomprehensible to you folks out thereincomprehensible to you folks out there-
yet to us in here it's often as simple as
the lines above- if you know the funds. the lines above-- if you know the funds.
mental concepts.
And nothing in the normal everyday
world will have prepared you for thea.
It's not jargon, but the simplest
ar to express thoughts in these areas

What is this system about:
Handy questions to size up
What computer is supposed to
be doing.

What data does it contain

Where is the data stored:
What other data will it
lInk up to?
What information
dot inlormadon
do you suppose
can receonathy
conn receosonebly
Do derived from that
What are the key
input and output davican?
In what horme
dove information
What do you suppose

The NEW ERA
A new era in computers is downing. Sod the first, or cinsict computer eras

The second, or baroque, computer
era used intricate equipment era used intricate equipment for hard
to understand purposes. rid together
with the greatest with the greatest difficulty by coo-
muter professionals who could nit or
would nt explain very well what they would t exp
were doing.

Many of faction is is coning. No one cos hough some nay felt it is not in their interest. 1 would like to call it her
the DIAPHANOUS age of the computer. By "diaphanous" t refer both to the
transparent understandable character of
the systems to come, and to the likelythe systems to come, and to the likely-
 In the first place, COMPUTERS MILL
OISAPPEAR CONCEPTUALIY, Will become "transparent", in the sense of being over, the "parts" of A computer system
Hill have CLEAR CONCETUAL MEAING.
 being co
simple.

Now, many people think computers are by
nature incomprehensible and complicated unfortunately that's because they have been Unfortunately that's because they have been
MADE To BE. Usually this is unintentional.
but fear not always. EXMPLE. Instead of but fear not always. EXNMPLE. Instead of
being told, this is the mysterious YZ conput-
cr it has to have things just so you have to
 is "This system is set ap for keeping track of
ho owes what to the company. On the screen
you can get lists of accounts and outstanding you can get lists of accounts and outstanding
hills and who owes thea; if you point at one
bit with the light pent the printing machine over
he will print bill ali sec to go in the
envelope.

What is responsible for this remarkable
For one thing sailer and sailer conn-
cs are buying computer services, and they panics are buying computer services and the Hon't stand for ridiculous complicretions,
For Another thing a number of people In the
computer field have gotten sick of syst oms computer field have got en sick of syst toms
that mate things hard for people Finally,
the price of computers, especially micro-
 fast that they can be tailored to fit people
rather than vice vera. But dost of all,
it's justine, that's all. bibliography
C.L. Freitas, "Making the Bent Buy for the Compares the relative costs of
minicomputers std etectharingi concludes
that minis are the best buy.

existing personal of
excessive complicate

THE DEEP DARK SECDET

THE MAGIC OF THE COMPUTER PROGRAM
The baste, central magical interior device of the computer we shall call a program follower. A program follower is an electronic device (usualiy) out the step each specfifes and goes on to the next.

The program follower reads down the list of inctructions in the program, taking each instruction in turn and carrying it out before it goes on to the naxt.

Now, there are program followers that just do that and nothing more; they have to stop when they get to the end of the list of instructions.

WHAT, THEN, IS A (Digital) COMPUTER?
A device holding stored symbols in a changeable memory,
performing operations on some of those symbols in the memery.
in aequence spectified by other symbols in the memory,
able to change the sequence
based on tests of symbols in the memory,
and able to change symbols in the memory.
For examplat in the memory
Rather than try to alip it to you or prove it in some fancy way, let's just atate baldly: the power of such a machine to do almost anything surpasses all previous technical tricks in human history.

HOW CAN A COMPUTER CONTROL
SO MANY DIFFERENT THINGS?

Answer. Different as they may seem, all
devices are controlled in the same way. Every devices are controled in the same way. Every connection serup, and in this interface are the device regiaters.

These device regiaters look the same to the computer: the computer program aimply moves information patterns into them or moves information patterns from them to see what they contain.

The computer, being a machine, doenn't know or care that device register 17 (say) controls a hog feeder, or device register 23 (say) receives information from smog detectors. But what you choose. in your program, to put into device registe
17. controls what the hogs ant, and what comes into device regiater 23 will tell your program you hope, about amog will tell your program. to handle thase thinge in your program in your busineas.

COMPUYER

"What a an INterfoce?" askel the baby mochine.
"Whaterer Tums You O_{n},"
sond it dat.

HOW DOES THE LOOP WORK?
The computer does things over and over by changing a stored count, then testing the stored count against another number which is what the if the desired count has not been reached. This is called a loop. (If there's no way it can ever get out, that's an endless loop.) (Actually, the program loop is done the same way as a program branch: IF a certain count has not been reached. It branches BACK to the start of the loop.)

Other things besides programs may be stored in the memory. Anything besides programs are usually called data.

The instructions of programs use the data in differen ways. Some programs use a lot of data, some use a little, some don't use any. It is one of the fascinating and powerful things about the computer that both on, are stored as a program, and the data they work , are stored as patterns of bits in the same memory. rogran can be modified as needed. Indeed, the program can modify its own patterns of bits. a very

WHAT DO PROGRAMS LOOK LIKE?
In what forms are these programs stored, you ask? Well, they are written by people in computer languages, which are then stored in some form in follower can act on them. But what does a computer language look like, you ask? Aha...

go to page i6

If you want to see what the bottom-most level looks like, with all the bits and things, gkip ahead to p.S.)

Whatever it may do in the real world. to the computer program it's just another device.
analog computers disposed of
There are two kinds of computers: analog and digital. (Also hybrid, meaning a combination. Analog compulers are will polish compared to couple of paragrapho
"Analog" is a shortened form of the word "analogy." Originally an "analog" computer was one that represented something in the real world by some other sort of physical enactment-- for instance, building a model of an economic system with tubes and liquids; this can demonstrate Keynesian economic principles remarkably well.

However, the term "analog" has come to mean amost exclusively pertaining to measurable alectrical sigmals, and an "analog computer" device that creates or modifies measurable electric signals. Thus a hi-fi amplifier is an analog computor (it multiplies the signal), a music synthesizer is an analog computer (It generates deteriorated: alrost anything with wires it an analog computer.

Analog computers cannot be truly programmed. only rewired.

Analog equipment is userul. important and indispensable. But it is simply not in the same class with digital computers, henceforth called "computers" in this book, which manipulate symbols on the basis of changeable symbolic programe.
"Analog computer" also means any way of calculating that involves measuring approximate readings, like a silide rule.

THE POWER AND THE GLORY

Forget what you've ever heard or imagined about computers. Just consider this:

The computer is the most general machine

 man has ever developed. Indeed, it should be called the All-Purpose Machine, but isn't, for reasons of historical accident (see nearby). Computers can control, and receive information from. virtually any other machine. The computer is not like a bomb or a gun, which can only destroy, but more like a typewriter, wholly noncommittal between good and bad in its nature. The scope of what computers can do is breathtaking. Illustrated are some examples (although having all this happen on one computer would be unusual). It can turn things on and off, ring bells, put out fires, type out on printing machines.Computers are incredibly dogged. Computers can do things repeatedly forever, or an exact, immense number of times (like 4,901.223), doing something over and over, depending on whether it's finished or not. A computer's activities can be combined in remarkable ways. One activity, repeated over and over, can be part of another activity repeated over and over, which can be a part of still another activity, which can be repeated ad infinitum. THERE ARE DEFINITE LIMITATIONS on what computers can do, but they are not easy to describe briefly. Also, some of them are argued about among computer people.

Computers are COMPLETELY GENERAL, with no fixed purpose or style of operation. In spite of this, the strange myth has evolved that computers are somehow "mathematical."

Actually von Neumann, who got the general idea about as soon as anybody (1940s), called the computer

THE ALL-PURPOSE MACHINE
(Indeed, the first backer of computers after World War II was a maker of multi-lightbulb signs. It is an interesting possibility that if he had not been killed in an airplane crash, computers would have been seen first as text-handling and picture-making machines, and only later developed for mathematics and business.)

We would call it the All-Purpose Machine here, except that for historical reasons it has been slapped with the other name.

But that doesn't mean it has a fixed way of operating. On the contrary.

COMPUTERS HAVE NO NATURE AND NO CHARACTER.
save that which has been put into them by whoever is creating the program for a particular purpose. Computers are, unlike any other piece of equipment, perfectly BLANK. And that is how we have projected on it so many different faces. perfect an it many diferent face

A HELPFUL COMPARISON

It helps sometimes to compare computers with typewriters. Both handle information according to somebody's own viewpoint.

Nervous Question	Helpful Parallel
"Can a Computer	
Write a Poem?"	"Can a Typewriter Write a Poem?"
"Can't Computers Only	
Behave Mechanistically?"	"Cure. Your poem.) Behave Mechanistically?" (Yes, but carrying out your intent.)
"Aren't Computers	"Aren't Typewriters
Completely Impersonal?"	Completely Impersonal?" (Well, it's not like handwriting. but it's still what you say.)

Many ordinary people find computers intuitively obvious and understandable only the complications elude them. Perhaps these intuitively helpful definitions may help your intuition as well.

1. Think of the computer as a WIND-UP CROSSWORD PUZZLE
2. A COMPUTER IS A DEVICE FOR TWIDDLING INFORMATION. (So, what kinds of information are there? And what are the twiddling options? These matters are what the computer field consists of.)
3. A computer is a completely general device, whose method of operation may be device, whose method of operation $\frac{\text { may }}{\text { changed. } \frac{\text { for }}{\text { handling }} \frac{\text { symbols in }}{\text { any }}}$ specific way.

BEAUTIFUL BUNNY BOOTIES

Cybercrud is not aimed only at laymen. It can work even among insiders.

The operations manager of a national time-sharing service, for example, was fanatica about cleanliness. In order to assure a Clean computer Room, he said, and hence no dangerous duspiring that anyone antering the computer had to wear cloth bootles over his shoes.

Booties were hung outside for those who had to enter.
"And I had the greatest time making his." anys his wife, laughing. "With the cutest bunny faces on them. The buttons were the hardest part to get-- you know, the ones with tells this.
"Of course there was no need for it." he now chortles, "but it sure kept people out of the computer room."
(That's applied logic for you.)

"First get it through your head that computers are big, expensive. fast, dumb adding-machine-typewriters. Then realize that most of the computer technicians that you're likely to meet or hire are complicators, not simplifiers. They're trying to make it look tough. Not easy. They're building a mystique, a priesthood. their own mumbojumbo ritual to keep you from knowing what they-- and you-- are doing."
-- Robert Townsend Up The Organization (Knopf), p. 36.

The ChRGO-CUIT ASPECT

Outsiders are often prey to cybercrud they dream up themselves. I once knew a college registrar's office where they had been getting along fine for years with paper forms. The year before the computer was slated to arrive, they started using file cards filled out by hand, instead
Why? "Well, we thought that would make it easier Why? Well, we thought that would make it easier
for the computer. Computers use cards, don't they?

Note that referring to a computer as if it were a living creature is not cybercrud: to say that a program low and "goes to sleep "" are all colorful brief ways of describing what really happens (See Guidelines for Writers and Spokesmen, p. Y7)

WHAT SECRET POWERS DOESTHS AN POSSESS?

Cybercrud is, of course, just one branch of THE GREAT GAME OF TECHNOLOGICAL PRETENS that hat the whole world in its gruap

The MiTty of the MACHINE: a deep cultural engram

Public thinking sbout computers is heavily inged by a peculiar image which we may call the Myth of the Machine. It goes as follows: there is something called the Machine, which is Taking Over The World. According to this point of view The Machine is a relentless, peremptory, repetitive invariable, monotonous, inexorable, implacable ruthless, inhuman, dehumanizing, impersonal Juggernaut, brainlessly carrying out repetitive (and oflen violen) actions. Symbolie of this is of course Charlie Chaplin, dodging the relen s. repetilv. hine he must deal with in the film Modern Times.

Ordinarily this view of The Machine is contrasted with an idea of a Warm Human Belng. usually an idealized version of the person thinking these thoughts.

But consider something. The model often goes further than this. The Machine is cold, the fuman Being emotional and warm. Yet here such a thing as being too emotional and warm. eing who goes too far on the same scale. Strangely he has at least three different names. though the picture of him is abstractly the same:

X Machine X
Warm
Human Human "Nigger"
"Hippie"
Now, "bums." "niggers" and "hippies" are not real people. The words are derogatory slang for the destule. Tor perso win any African But the remorkblo thing about the slang is that But the remarkable ining about the slang is that the same connotation in our culture: someone who is dirty lary and lascivious. In other words, is dirty, lazy and lascivious. In other words Warm lluman Being is carried too far by the bunch at the other end.

In other words, this conceptual continuum a single. fundamental scale in our culture: why is unclear. Since most people consider themselves-- naturally:-- to be in the middle of two bad things on either side.

It also has another effect: it supplies a derogatory way of seeing. On the right-hand side, it allows many Americans not to see. or to see only with disgust, the destitute and those with African ancestry and those dressing in hippie style. But this book isn't about that.

The left side of the continuum is our presen concern. There, too. people refuse to see. What people mainly refuse to see is that machines in general arent like that, relentless, repwitive,
 are some machines line. But the assembly lin was designed the way it is because it gets the most work out of people. It gets the work it does out of people by the way it exerts pressure.

So here we see the same old trick: people building a system and saying it has to work that way because it's a machine, rather than because that'a how 1 designed it.

To make the point clearer, let's consider some other machines.

The automobile is a machine, but it is hardly he repetitive, "dehumanized" thing we usually hear about. It goes uphill, downhill. ieft and right, ast and slow. It may be decorated. It is the scen tantly, automobiles are very much the extension of their owners. exemplifying life-style, personulity, and ideology. Consider the Baja Buggy Volkawagen and the ostentatious cushy Cadillac. Consider the dashboard ornament and the bumper sticker. The Machine. indeed.

The camera is a machine, but one that allows s user to freeze and preserve the views and images of the world he wants.

The bicycle is a machine, but one that bring ou into personal and non-polluting contact with nature, or at least that stylized kind of nature accessible to bicycle paths.

To sum up, then. The Machine is a myth. The bad things in our society are the products of bad systems, had dectsions and conceivably had people, in various combinations. Machlnes per se are essentially neutral, though some machines can be built which are bad indeed, such as bombs. guns and death-camps.

The myth of The Machine in a curlous aspect of our ideology. It it enpecially American, or world-wide?

If we ignore this myth we can see each possible machine or system for what it is, and study how it ties in with human iffe for good or ill. fostering or lousing up such things as the good Mfe, preservation of species, love and self-respect.

THE MYTH AND THE RORSCHACH

"The computer is the ultimate Rorschach or. Bales, a Harvard psychologist, was somew hat perturbed by the papers he was getting in his eminar on computer modelling in the social sciences. Somewhat nutty people in the seminar were writing somewhat nutty papers for him.

And truer words were never spoken. On his point 1 find Bales has been terribly, terribly ight. The computer is on incredible projective test: What you see in the computer comes right off the back wall of your psyche. In over a decade people's personalities entwine with the computer eapheap it his own--or rejecting it - in his wn often unique and peculiar way deaply rehecting his concerns and what is in his heart. es odd people are auracted to the computer. and the bonds that hold them are not those of casual interest.

In fact, people tend to identify with it.
In this light we may consider the oftenheard remarks about computers being rigid, narrow, and inflexible. This is of course true in sense, but the fact that some people stress in about them. My own impression is that the people who stress this aspeet are the comparatively rigid, narrow and inflexible people.

Other computer experts, no less worthy. ell us the computer is a supertoy, the grandes! play machine ever to be discovered. These people tend to be the more outgoing, generou and playful types.

In a classic study, psychiatrist Bruno Bettelheim examined a child who thought he was a machine, who talked in staccsto monosylhables walked jerkily and decorated the side of his bedwith geers. We will not discuss here the pro bit consider that identifying with machines is must cultural theme in American society. crucial cultural theme in American soll was. And it well be that computer people are partaking of this same elf-image: in a more benign form, perhaps, a shift of gears (as it were) from Bettelheim's mechanical child, but still on the same track.

Some of the computer high chool kids i've nown because of their youth, have been even more up-front about this than adults.

I know one boy, for instance, whose dream as to put a 33ASR Teletype on wheels under radio control. and alarm people at the computer conference by having it roll up to them and clatter out questions impersonally. af you knew the kid - aloof and haughty-secming-- you might think that's how he approaches people in real life.)

1 know a high-school bay not a compute expert) who programmed a computer to type ou a love story. using the aisic pril comma he only one hite the love story on paper.

The best example i can think of. though. took place at the kids' booth (see p. 97) at a girls was sitting at an off-line video terminal. idly typing things onto the screen. When she had gone a sentence remained. It sald:
tove you all, but nt a distance
(On the other side of this book, Dream Machines. we will carry this matter further. The most exciting things in the cumputer field are coming from people trying to realize theiwildeat dreams by computer: artincial inte ligence. computer

CYBERCRUD

A number of people have gotten mad at me for coining the term "eybercrud," which I define as "putting things over on people asing computs
But as long as it gees on well need the word. At But as tong as it goes on well need the word.
every corner of our soclety, people are issuing every corner of our soclety, people are issuing
pronouncements and making other people do things and saying it's because of the computer. The function of cybercrud is thus to confuse, intimi date or pressure. We have all got to get wise to this it it is going to be curtailed

Cybercrud takes numerous forms. All of them, hawever. share the patina of "science" that computers have for the layman.

1a) COMPUTER AS MAGIC WORD
The most delicate, and seemingly innocent. technique is the practice of naming things so as spuriously to suggest that they involve computers. Thus there is a manufacturer of pot-pipes with Data in its name, and apparently a pornography house with a "Cyber-
bb) COMPUTER AS MAGIC INGREDIENT
The above seems silly, but it is no less silly than taiking about "computer predictions" and a computer studies" of things. The mere $\frac{\text { fact }}{\text { theolved in something has }} \frac{\text { no }}{\text { no }} \frac{\text { bering }}{}$ on its character or validity. The way things are done with cumputers affects their character and validity. just like the way things are done withou computers. (Indeed, merely using a computer often has no bearing on the way things are done.)

This same technique is easily magnified to suggest. not merely that something involves computers, "computerize" performs this fatal function When used specifically, as in computerize the billing operation. it can be fairly clear; but make it vague, as in computerize the office, and it can mean anything.

Fully computerize" is worse. Thus we hea about a "fully computerized" print shop, which turns out to be one whose computers do the type setting; but they could also run the presses. pay the bills and work the coffee machine. For prac ticel purposes, there is no such thing as "fully" computerized. There is always one more thing
computers could do.

GY ThE AD OF THE MIRROR SHE PUT ON THE HEAD
2) White les: The computer made me to it

Next come all the leetle white lies about how such-and-auch is the computer's fauit and not your deciaion. Thus the computer is made a for what somebody want to do anywa covering up "It has to be this way."
There's nothing we can do, this is al
nded by computar."
The computer will not allow this." ahe computer won't let us." The translation is, of course. THE STINKY LOUSY PROCRAM DOES NOT PERMIT IT. Which means in turn: WE DO NOT CHOOSE TO PROVIDE, IN OUR

Now, it is often the case that grod and eufficient remen existe for the way things are done Hut it in also often the case that compsines and the puble inconvenienced, or worse, by decisions olum of with computer peopla.)

Yagottas: COMPUTER AS COERCER

More aggressively, cybercrud is a techniqu puter requires it," you say, and so people can be made to hand over personal information, secretaries can be intimidated into scouring the filea, payment schedules can be artificially enforced.
the general status trick
Status tricks, combining the putdown and the self-boost, date back to times immemorial. But today they lake new forms. The biggest trick is to elevate yourself and demean the listener al the same time, or, more generally, the technique is making people feel stupid while acting like a big cheese. Thus someoneone might say
ive that computers now make necessery
But the translation seems to be:
"People must get used to the inflexible badly thought out. inconvenient and ankind systems that I and other self-righteous individuals and com panies are inflicting on the world.

YOU DON'T ALWAYS GOTTA
The uninformed are bulldozed, and even the informed are pressured, by the foolish myth or the clever, implacable and scientific computer to which they must adapt. People are told the have to relate to the computer-- But actusily have designed around it, in much the same way sword dence is desirned around the sword.

When establishment computer people say that the computer requires you to be systematic. they generally mean you have to learn their system. But anyone who tells you a method "has to be He prefers to change the method for the computer. The reasons may be bad or good. Often the computer salesman or indoctrinator will presen as "scientific" teehniques which were doped out whomped up by a couple of guys in the back rom

Here is an example, as told to me. A friend mine worked in a dress factory where they had a perfectly good system for billing and bookkeeping Customers were listed by name and kept in alphabetical order. The fast pace of the garment industry meant that companies often changed names, and so various companies had a number of different names in the file. This bothered nobody because the people understood the system

Then management bought a small computer. never mind what brand, and hired a couple of guy never mind what brand, and hired a couple of guys
to come in and put the bookkeeping systers on it.

Still okay. Indeed, small programming firm can sometimes do this sort of thing very well. because they can work flexibly with the people and don't necessarily feel committed to making it work a certain way.

Well, this was a nice instance where the existing systern could have been exactly trans erred to the computer. The fact that some custom had several names would have hritten that allowed users to type any acceptable customer name, causing the computer to look up the correct account (and if desired. print its usual name and ask for verification)

But no. The guys did not answer employees questions comprehensibly, nor did they want suggestions. They immediately decreed that since computers only worked with numbers (a fib. bu convenience to them), every customer would

After that the firm had nothing but trouble through confusion over the multiple names, and my friend predicted that this would destroy the company. 1 haven't heard the outcome.

This story is not necessarily very interating: it merely happened. It's not a made-up example.

Moral: until we overthrow the myth that people always have fordaph to computers, rathe mht Adeptations should take place on both sides, darn It.
everybody does it
Cybercrud is by no means the province of computer people alone. Buginess manipulators Companies do it to the public. The preas, indeed. contributes (see Suggestions for Writers and Spokeamen, p.47). But the computer pwople are best at it because they have more technicalities to ahume around magically: they can put anybody down.

Now, computer people do denerve respect So many things that people do with computers are herd. It can be understood that they want to be apprectated, and if not for the particulara, for the machismo (machiniamo?) of coping with intricacy. But that is no exeuse for keeping others in controlled igmorance. No man hat a right to be proud thei he is presarving and manipulating the ignorance of othere

You can buy little boxes with blinking
lights that do nothing else but blink. They reslly put people uptight. "Are you recording What I say?" people ask. "Is it a computer?"

REASONS FORCYBERCRY (ALLBAD)

2) to manipulate situations
3) 10 cont
4) to look tike hot stuts
5) to keep outsiders from seeing through something.
6) to sell womething
7) to put some
8) genaral secretivoneas.
9) low expectation of others' mentality.
10) seeking to be the broker and middleman for
all rolations with the compurer
11) vaguenese sounds profound.
12) you don't have to show what you're not sure of
13) you really don't know
ically, as many members are concerned n with machinery itself, but with
languages, theories and so on.

If you have any plans to stick with the subject, membership in the Association for Computing Machinery is highly recommended. ACM calls itself "The Society of the Computing Community." Thus it properly embraces both professionals and fans.

Dues for official students are $\$ 8$ a yearn $\$ 35$ for others, which includes a subscription to Communications of the ACM, the official mag. Their address for memberships and magazines is ACM, P.O. Box 12105
Church St. Station, New York, NY 10249 (The actual ACM HQ is at 1133 Ave. of the Americas, New York, N.Y. 10036.)

They have stacked the deck so that if you want to subscribe to any ACM magazines you'd better join anyway. Here are the year prices:

The one drawback to joining the ACM is all the doggoned mailing lists it gets you on. It's unclear whether there's anything you can do to prevent this, but there oughta be.

SIGs and SICs. For ACM members with special interests (and we all have them), the ACM contains subdivisions-- clubs within the club, of people who keep in touch to share their interests. These are called SICs (Special Interest Committees) and SIGs (Special Interest Groups). There are such clubs-- SICs and SIGs-- in numerous areas, including Programming Languages. Computer Usage in Education, etc. Encouraging these subinterests to stay within ACM saves a lot of trouble for everybody and keeps ACM the central society.

AFIPS
AFIPS is the UN of computing. They sponsored the Joints, and now sponsor the NCC. Just as individuals can't join the UN, they can't join AFIPS, which stands for American Federation of Information Proces sing Societies. Depending on your special interests, though, you can join a member society.

The constituent societies of AFIPS are as of June 1973: (If any turn you on, write AFIPS for addresses: AFIPS, 210 Summit Ave. Montvale NJ 07645.)

* ACM: the Association for Computing Machinery

IEEE, the Institute of Electrical and Electronies Engineers. This is the professional society of electronics guys
Simulation Councils. This is the professional society for those interested in Simulation (see p. 5%).
Association for Computational Linguistics. (Where language and computer types gather.)
American Association of Aeronautics and Astronautics.
American Statistical Association.
Instrument Society of America.
Society for Information Display, (See flip side.) American Institute of Certified Public Accountants. American Society for Information Science. (This group is mainly for electronified Librarians and information retrieval types-- see nip side.)
Society for Industrial and Applied Mathematics. Special Libraries Association
Association for Educational Data Systems
IFIP. This is the international computer society Like AFIPS, its members are societies. so joining ACM makes you an IFIP participant.

IFIP holds conferences around the world. Fun. Expente.

Conferences in any field are exciting, at least thl you reach a certain degree of boredom with the field. Computer conferences have their own heady atmosphere, compounded of a sense of elitism, of being in the witches' cauldron, and the sure sense of the impact everything you see will have as it all grows and grows. Plus you get to look at gadgets.

Usually to go for one day doesn't cost much. and at the bigger ones you get lots of free literature. have salesmen explain their things to you, see movies, hear fascinating (sometimes) speakers

THE JOINTS! The principal computer conferences have always been the Spring Joint Computer Conference, held in an Eastern city in May, and the Fall Join Computer Conference, held in a Western city in November (the infamous Spring Joint and Fall Joint, or SJCC and FJCC In 1973, because of poor business the previous year, the two were collapsed nto one National Computer Conferenc (NCC) in June (Universal Joint?) The Joints have always been sponsored by AFIPS (see below). The National Computer Conference will henceforth be annual, at least for a while.

The cost of attending is high--

 while it's just a couple of dollars to look at the exhibits, this rises to perhaps fifteen dollars to go to the day's technical sessions or fifty for the week (not counting lodging and eats)-- but it's very much worth it. The lower age limit for attendees is something like twelve, unfortunately for those with interested children.Other important conferences: the annual ACM conference in the summer; BEMA (Business Equipment Mfrs. Assn.) in the fall and spring (no theory, but lots of gadgets): and other conferenes on special subjects, held all the time all over. Lists of conferences and their whereabouts are in most of the magazines; Communications of the ACM and Computer Design have the biggest lists.

CONFERENCE PROCEEDINGS. (5uch 25 'Proc ACM 6S,
As you may know, conferences largely consist of separate "sessions" in which different peopl talk on specific topics, usually reading out loud from their notes and showing slides

Conference proceedings are books which result from conferences. Supposedly they contain what each guy said; in practice people say one thing and publish another, more formal than the actual presentation.

This leads to a curious phenomenon at the main computer conferences (SJCC.FJCC. ACM and now NCC). When you register they give you a (you're actually paying perhaps $\$ 15$ for it), containing all the papers that are about to be given, nicely tricked out by their authors. If you rush to a corner and look at the book it may change your notion of which sessions to go to

Anyway, the resulting volumes of conference proceedings are a treasure trove of interesting paper on an immense variety of computerish and not-socomputerish subjects. Great for browsing. Expensive but wonderful. (Horrible when you're moving, though, as they are big and heavy.)

JOINT PROCEEDINGS. Proceedings for the Spring Joint and Fall Joint, from the fifties to 1972, are available from AFIPS Press, as are proceedings of the 1973 NCC. (AFIPS Press, 210 Summit Avenue Montvale NJ 07645.) They cost $\mathbf{\$ 2 0 - 2 6}$ each after the conference is over; less in microfilm. (At the Joint Conferences. AFIPS Press often gives discounts, at their booth, on back Joint proceedings.) \rightarrow If you want to spend money to learn about the field, Proceedings of the Joint Conferences are a fine buy.

Back ACM Proceedings. From the ACM.
Other Proceedings. Often sold at counters at conferences. Or available from variou publishers. Join the ACM and you'll find out soon enough.

TRY TO GET TO THE NATIONAL JOINT. Just as
every Muslim should go to Mecea, every
computer fan should go to a National Joint
(National Computer Conference, or NCC).
The next two are (check the magazines):
May 1974, Chicago
May 1975:-Sen-Franoisco A NAHEIM
NO QUALIFICATIONS ARE NEEDED. Think of it
as a circus for smart alecks, or, if you
prefer, a Deep Educational Experience.

WHAT HAPPENS IF YOU TAKE COMPUTER COURSES?

There is a lot of talk about "best" ways of teaching about computers, but in most places the actual alternatives open to those who want to learn are fairly dismal.

Universitics. Universities and colleges tend to teach computing with a mathematical emphasis at the start. Indeed, most seem to require that to get into the introductory computer course, you must have had higher math (at least calculus, sometimes matrix algebra as well) This is preposterous, like requiring an engineering degree to drive a car. (Gradeschool kids can learn to program with no prerequisites.)
\Rightarrow It seems to be to cut down enrollment, since they're not set up to deal with all those people who want to learn about computers. (And why not?) Also it's a status thing; as if this restriction somehow should keep enrollment to students with "logical minds." whatever those are, or "mathematical sophistication," as if that were relevant.
"Computer schools," community and commercial colleges, on the other hand, tend to prepare students only for the most humdrum business applications-- keypunching (which is rapidly becoming obsolete), and progrumming in the COBOL tanguage on IBM business systems. This gets you no closer to the more exciting applications of computers than you were originally.

Some experimental trends are more encouraging. Same colleges, for instance, offer
 programming intended to serve as an introduction to this wider horizon.
the spring somit
AO MORE.
Highschool courses seem to be cutting through the junk and offering students access to minicomputery with quickie languages. usually BASIC. Both Digital Equipment Corp. and Howlett-Packard seem to be making inrosds here.

Kiddie setupa, rumored to exist in Boston and San Francisco, are geared to letting grade-school children see and play with computers. Also one company (General Turtle p. $/$) is selling computer toys intended to encourage actual programming by children.

YOUR
 INFORMATION SOURCES

There are several major places you get infor motion in the computer field: friends, magazines, bingo cards, conferences and conference proceedings friends.

Friends we cant help with. But you might make some at conferences. Or join a computer club? magazines.

The principal magazines are (first few listed roughly by degree of general interest):

Datamation. $\$ 15$ a year or free. The main computer magazine, a breezy, clever monthly. Lots of eds, interesting antiles the layman can effort. Twits IBM

Subscriptions are $\$ 15$ if you're not a computer person, free if you are Datamation, 35 Mason St., Greenwich CT 06830 .

Computer Decisions. Some $\$ 7$ a year or free. Some nice light articles, as well as helpful review articles on different subjects. Avoids technicalities. subjects. Avoids Computer Decisions, 50 Essex St. Computer Park NJ 076.

Computers and Automation. Avoids technicalities but quite a bit of socisl-interest stuff. Nobody gets it free; something prises, Inc 815 Washington St .

Computerworld (actually a weekly tabloid paper). Not free: $\$ 9$ a year. More up-to the-minute than most people have time to be. Computerworld. Cire. Dept. . 797 Washington St. . Newton, Mass, 02160.

Computing Surveys. Excellent, clearly written introductory articles on a beginner should definitely subscribe to Computing Surveys. (See ACM, below.)

Communications of the ACM. High-class \rightarrow "CACM". journal about theoretical maters and field. (See ACM, below.)

Computer Design. $\$ 18 / \mathbf{y r}$. or free. ConcernCrates on parts for computers, but also tells technical details of new computer and peripherals. Computer Design, Circulation Dept., P.O. Box
Winchester, Mass. 01890 . Winchester, Mass. 01890.

Data Processing magazine. Oriented to conventional business applications of computers. $\$ 10$. North American Publishing Co., 134 N. 13th St. . Philadelphia, Pa. 19107. written $\$ 12 / \mathrm{yr}$. Thoughtful, clearly Quite a bit on Artificial Intelligence. Quite a bit on Artificial Intelligence (see ip eide). IEEE Computer Society
16400 Ventura Blvd. Encino CA

Here are some other magazines that may interest you. No particular order.

PCC. Delightful educational/counterculture tabloid emphasizing computer games and fun. Oriented to BASIC language \$4/yr. from People's Computer Commany. P.O. Box 310, Menlo Park,
CA 94025 .

Computing Reviews. Prints reviews, by individuals in the field, of most of the serious computer articles. Useful, but subject to individual biases and gaps. (See ACM, below.)

The New Educational Technology. $\$ 5 / \mathrm{yr}$, Presumably concentrates on activities of its publisher: General Turtle. Inc. . 545 Technology Square, Cambridge, MA 02139: wonderful computer toys for
schools and the well-heeled.

The Honeywell Computer Journal. Something like $\$ 10$ a year. Honeywell information Systems, Inc., Phoenix, Arizona. content; readable, nicely edited unusual practice of including microfiche unusual peaches of entire issuich in (microfilm card) of entire issue in pocket

IBM Systems Journal. Showcase technical journal of miscellaneous content, especially arcana about IBM products
$\$ 5 / \mathrm{yr}$. IBM, Armonk, NY 10504 .

IBM Journal of Research and Development. Show case technical journal of miscel laneous content. $\$ 7,50 / \mathrm{year}$. IBM
Armonk, NY 10504.

Journal of the ACM. A highly technical, math("JACM") oriented journal. Heavy on graph theory and pattern recognition. (See ACM.
below.)

Digital Design. $\$ 15$ or free. About computer parts and designs. Digital Design.
Cire, Dept. 167 Corey Road, Brook Cire, Dept., 167 Corey Road, Brooklime, Mass. 02146.
$\frac{\text { Infosystems. Aspiring mag. } \$ 20 \text { or free. }}{\text { Hit }}$ Hitchcock Publications. P.O. Box 3007 Wheaten, III. 60187.

Think. This is the IBM house organ Presumably free to 1 BM customers or prospects. IBM. Armonk, NY 10504.

There are also expensive (snob?) magazines, bought by executives.

Computer Age. $\quad \$ 95 / \mathrm{yr}$. EDP News Services Inc., 514 10th St. N.W., Washington DC 20004
$\frac{\text { Computer }}{1309} \frac{\text { Digest. }}{\text { Cherry }}$ St. . Philadelphia PA 19107.
Data Processing Digest. $\$ 51 / \mathrm{yr} .6820$ Ia Tijers Blvd. Los Angeles CA 90045.

Hey now, here's a magazine called Computopia. Only $\$ 15$ a year. Unfortunately in Japanese
Computer Age Ca. Ltd., Kasumigaseki Bldg., Box 122, Chiyoda-Ku, Tokyo, Japan.

The best review of what's happening lately, by none other than Mr. Whole Earth Catalog himself: Stewart Brand, "Spacewar: Fanatic Life and Symbolic Death among
the Computer Bums." Rolling Stone, 2 the Computer Bums." Rolling Stone, 2 December $72,50-56$. He visited the mos the fun-and-games side of things.

Gilbert Burch and the Editors of Fortune. The Computer Age. Harper and Row. Ignore the ridiculous full title. The Computer Age
and Its Potential for Management; this hook has $\frac{\text { ant }}{\text { not }} \frac{\text { potential to do }}{}$ with management, but is a nice general orientation to the field.

Thomas H. Crowley, Understanding Computers. MeGraw-Hill. This is the most readable and straightforward introduction to the techno-
calities around.

Jeremy Bernstein. The Analytical Engine. Random House, 1964. History of computers, well told. and the way things looked in 1964, which wasn't really very different.

Donald E. Knuth, The Art of Programming. (7 vols.) A monumental series. excellently written and widely praised, for anyone who wants to dig in and be a serious programmer. Three of the seven volumes are out so far. at about twenty bucks apiece. Vol. 1: Fundamental Algorithms. Vol. 2: Seminumerical Algorithms. Vol. 3: Sorting and Searching. Addison-Wesley

BUMMERS
This is perhaps a minority view, but I think any introduction to computers which makes them seem intrinsically mathematical is misleading. Historically they began as mathematical, but now this is simply the wrong way to think about therm Same goes for emphasizing business uses as if that were all.

We will not name here any of the various disagreeable pamphlets and books which stress these aspects and don't make things very clear.
about free subscriptions. Many of the magazines are free to "qualified" readers, usually magazines are free to "qualified" readers, usual influence the purchase of computers. computer s influence the purchase of computers. computer ser-
vices, punch cards. or the like. (They ask other vices, punch cards, or the like. (They ask other purchase is usually what decides whether they send you the magazine, It is also helpful to have a good-sounding title or company affiliation.

These are little postcards you find in all the magazines except the ACM and company ones. Fill in your name and an attractive title ("Systems
Consultant" or "consultant" is good-- after all. Consultant" or consultant is good-- after all,
someday someone may ask your advice) and circle someday someone may ask your advice) and circle
the numbers corresponding to the ads that entice you. You'll be flooded with interesting, expensively printed, colorful, educational material on different people's computers and accessories. And note that known.

However, a postoffice box is good, as it helps avoid calls at home from salesmen, wasting their red where you can assume a company name with no legal difficulties, so much the better.

popular computers

That the field has not been popularized by its better writers may simply come from an honest doubs that ordinary people can understand computers.

I dispute that. Through magazines, millions of Americans have learned about photography. Through the popular science-and-mechanics type magazines, and more recently the elect bubjectiche widely understood

So far nobody has opened up computers. This is a
will.

And you better believe that Popular Computers magazine is not very far away. Soon a fully-loaded minicomputer will cost loss than the best hi-fl sets. In a couple of years, thousands of individuals will own computers, and millions more will want to. Look out. here we go.

(Inecidental) -)

People ask me often where they can learn about "science." As in all fields. magazines are usually the best sources of general orientation

Science Digest is kind of helpful for a start although unfortunately they print summaries of every fool study that generalizes to the hearts of all humanity from two dozen lows State freshmen.

Scientific American is the favorite. Some stuff is hard to read but some, isn't; the pictures and diagrams are terrific.

Science \triangleq Technology magazine seems to me one of the better ones-- breezy, informative, not trivial

Science magazine is read by most actual scientists, and if you have a lively curiosity and can guess at the meanings of words, will tell you an incredible amount. (This is a main source for the science articles in the New York Times, which in turn... Their articles on politics of science, and the future, are very interesting, important, and depressing. You have to join Am. Assn. for the Advancement of Science, Washington, D.C.

Daniel S. Greenberg's Science and Government Report (sorry-- $\$ 35$ a year) is what really tells it. Greenberg is the men who knows both what is shaping up in science and the insane governmentad confusions and floundering responses and grandstanding and pork-barrel initiatives.

Greenberg is, incidentally, one of the finest writers of our time and a great humorist.

Science and Gavernment Report, Kalorama Station (really?), Box 21123, Washington, D.C. 20009.

This is the wall that the handwriting

ASPECTS OF THIS POOK

The explanations-- not yet fully debugged-- ar intended for anybody. The listings of expensive products and services are intended not only as corroborative detail for a general sense of what's available, but also for business people who might find them helpful, for affluent individuals and clubs who want to try their hand, and finally as a box score of how the prices are coming down. Because we are all going to be able to afford these things pretty soon.

This diagram shows the amazing and unique way prices drop in the computer field. The prices shown are for the first minicomputer, the PDP-5 (and its hugely popular offspring, the PDP-8); but the principle has held throughout the field, and the downward trend will probably accelerate due to the new big integrated circuits.

Another example: an IBM 7090, a very decent million-dollar omputer in 1960, was put up for sale at a modish Parke-Berne used computer auction" in 1970. If I remember aright, they could not get a $\$ 1000$ bid, because today's machines are so much maller, faster and more dependable

THE AMAZING TREND

NHFRE IT'S AT IN THIS BOOK

THE BUCK STOPS HERE
Everywhere in the world people can pretend that your ignorance, or position, or credentials, or poverty, or general unworthiness, are the reasons you are being pushed around or made to feel smal And because you can't tell, you have to take it.

And of course we can do the same thing with computers. Yes, we can do it in spades. (See "Cybercrud." p.8.) But many of us do not want to. There has to be a better way. There has to bea better world.

WHFRE IT'S AT

Computers are where it's at.
Recently a bank employee was accused of anbezzling a million and a half dollars by clever computer programming. His programs shifted ound but apparently kept things looking innocen by , but apparmin tricks. According to the papers the procram b up appearanes by redepositing tho stolen amount in each account as interest payments were about to be calculated then withdrawing it again just after. ("Chief Teller is Accused of Theft of $\$ 1.5$ Million at a Bank Here." New York Times, 23 March 73, p. 1.) The alleged embezzlement was discovered. not bank eudit, but by records found on the premises of a raided bookmaker.

In a recent scandal that has rocked the insurance world, an insurance company eppears to have generated thousands of fictitious customers and accounts by computer, then bilked other insurance companies those who re-insured the original fictitious policies-- by fictitious claims on the fictitious misfortunes of the fictitious policy-holders.

In April of 1973, according to the Chicago radio, a burglary ring had a "computerized" liat of a thousand prospective victims

There have been instances where dishonest univeraity students, nevertheless able programmers were able to change their course grades, stored on a certral univeraity computer.

It is not unheard of for ace programmers to create grand tincomprehensible systems that run hole companies, syatems they can personally play a a plano, and then blackmall their firms.
A friend of a triend of the author is an ace programmer at the Pentagon, supposedly a private upervising colonels. On days he is mad at his boss, he ways, the army cannot find out ins strength within 300,000 men. Or three million it he so

This awkward state of affalrs, obviously spanning both the American continent and most realma of endeavor. has come about for various

Pirst, the climate of uncomprehension leada anen in management to treat computer matters as "mare technicalities"-- a myth as sinister as the public rotion that computers are "ecientific"-and abandon the kind of scrutiny they sensibly apply to any other company activities

Second. most of today's computer systema are inherently laaky and insecure-- and likely to stay that way awhile. Getting things to work on them powers. (Eventually this will change, but watch out for the meantime.)

The obvious consequence is simply for the computer people to be allowed to take ove - the more well-informed and visionary peopl anyway-- can see the farthest, and apprectate most deeply the better ways things can go, and the steps that have to be taken to get there. (And Boards of Managers can at least be partally assured that hanky-panky at the lower levels will be prevented, if men in charge know where the bodies are buried.)

That seems to be how it's going. Examples:
The president of Dartmouth College, John Kemeny, is a respected computerman and a develBASIC (see p. 16).

The new president of the Russelt Sage Foun dation, Hugh Cline, used to teach computing at Columbia.

It's probably the same in industry. In other words, more and more, for better and for worse, things are being run by people who know how to use computers, and this trend is probably irreversible.

In some ways, of course, this is a sinister portent. In private industry it's not so bad. note the danger is nore of embezzlenent then he problem of the government. The men who manage the information tools are more and more in charge of government, too. And if we can have Watergate without computers, just wait. (See "Burning Issues," p. 58)

The way to defend ourselves against computer people is to become computer people ourselves. computer people, at least to the extent that we have already become Automobile People and Camera people-- that is, informed enough to tell when one goes by or when someone points one at you.

MANY MANSIONS

The future is going to be full of computers, for good or ill. Many computer systems are being prepared by a variety of lunatics, ideslists and reamers, as well as profit-hungry companies and whimanine clods, all for the benent of mankind. Which ones will work and which ones we will like is reorgize drastically the lives of makind.

For instance, Doug Engelbart at Stanford Research Institute has a beautiful syatem, called NLS, that will allow us to use computers as a generalized postoffice and publication system. From your computer terminal you just sign onto Engelbart's Syatem and you're at once in touch with lots of writings by ther subscribers, which you may call to your screen and write replies to.
(These grander and dreamier applications are discussed on the other side of this book.)

But the plain computer visions are grand enough.

The great world of time-sharing, for instance. ("Time-shering" means that the computer's time is shared by a variety of users simultancously. See p. 45.) If you have an account on a time-sharing computer, you can aign on from your terminal (see p. 14) over any telephone, no matter where you are, and at once do anything that particular computer allows-- calling up programs in a variety of computer languages, dipping into deta on a variety of subjects as easily as one now consults a chart.

For instance, at Dartmouth College-- where me-sharing is perhaps farthest advanced as a way of life-- the user (any Darmoulh student, for instance) can just sit down at a terminal and write a sor ingle program (in Dartmounto BASIC hanguage mouth has a complete file on its time-sharing system of the detailed sample from the 1970 census, the program can buzz through that and report almos immediately the numbers of divorced Aleuts or boy millionaires in the sample, or (more signifi cantly) the relative incomes of different ethnic groups when categorized according to the ques tioner's interests.

But simple time-sharing is only the beginning Networka of computers are now coming into being Most Bignificant of these is the ARPANET (Anance A ARPA, the Defense Department's Advanced military in cheracter). Dozens of large time-shartn military in cheracter). Dozens of large time-sharing Arpanet, and a user of any of these can reach directly into the other computers of the networkuaing their programs. data or other tacilities. Arpanet enthusiasts see this as the wave of the future

MINI MANSIONS
But while computers and their comblnation grow bigger and bigger, they also grow smaller and smaller. A complete computer the size of an Oreo cookle is now available, guaranteed for twentyfive years (and very expensive). But its actual heart, the intel microprocessor, is only gixty bucks $\frac{n o w}{}$, and just wait (see Microprocessors.
p. 44). By 1980 there should be p. H). By grammed and programmable objects in your hous as you now have TVs, radios and typewriters; devices will all be doing--ah, there's the quest that has many people talking to themselves.

OTHER COMING THINGS?
There are a lot of tall stories about what computers will do for the world. Among the most threatening. I think, are glowing reports of "scientffic" politics (don't you believe it). We hear how computers will bring "science" to govern ment, helping, for example. to redraw the lines of election districts. (See Cybercrud, p. ₹.)

Then you may also have heard that computers are going to be our new mentors and companions. tutoring us. chatting with us and perhaps lulling us (See "The God-Builders." flip side.) (r. SM 12)

CHOTZPAH DEPARTMENT

A college student broke through the security of the Pacific Telephone computer sy according to Computerworid (6 June 73), stole ove delivered to him! (Penthouse, December 73, claims
 but you get the idea.)

After serving a few weeks in jail. he has formed his own computer-securlty consulting company.

More power to him.

The new breed has got to be watched.
This is the urgency of this book. Remember hat the man who writes the payroll program can write himself aome pretty amazing checks-- perhap to be mailed out to Switzeriand, next year

From here on it's computer politics, computer Wirty tricks, computer wonderlands, computer everything

For anyone concerned to be where it's at, then, this book will provide a few auggestions Now is the time you either know or you don't.

Enough power talk. Knowledge is power. Here you go. Dig in.

LESSON 1: GETTNG THINGS STRAIGHT

The greatest hurdle for the beginner cor "layman") is making an effort to grasp particulara of that which he hears about.
A. WHAT IS ITS NAME? Every syatem or proposal or prolect has a name of some sort. Make an eflort to learn it , or you're stuck trying to refer to "that computerish thing."
(And don't be a anob sbout acronyms, those all-cap names and terms sprung from the foreheads of other words, Hike ILLIAC and PLATO and CA There's a need for them. Short words are too general to use for names, and long phrases ar too unwicldy.)
b. in what particular way does it EMPLOY THE COMPUTER? For record-keepin For looking stuff up quickly or fanclly? For searching out combinations? For making up combi
nations and teating their properties? For enacting complex phenomena? As automatic typewriters? To play music, or just to store the written notes?

It is hoped that you will become sensitive to these distinctions, and be able to understand and remember them after somebody explains then

Otherwise you're stuck just referring to nthat computer businest." and you're in with the rest of the sheep.

The second half of the book. Dream Machines, is specially about fantasy and imagination. and new techniques for it. That half is related to thin h

The remarks below all refer to this first half, the Computer Lib half of the book.

$\rightarrow-$

FANDOM

With this book I am no longer calling myself a computer professional. I'm a computer fan, and I'm out to make you one. (All computer professionals were fans once, but people get crabbier as they get older, and more professlonal.) A generation of computer fans and hobbylsts is well on its way, but for the most part these are people who have had some sort of an In. This is meant to be an In for those who didn't get one earlier.

The computer fan is someone who appreciates the options, fun, excitement, and flendish fascination of computers Not only ts the computer tun in itself, like electric trains; but it also extends to you a wide variety of possible personal uses. In case you don't know it, the price of computers and of using them is going down as fast as every other price is going up. So in the next few decades we may be reduced to eating soybeans and carrots, but we'll certainly have computers.)

Somehow the idea is abroad that computer activities are uncreative, as compared, say, with rotating clay against your fingers untll it becomes a pot. This is categorically false. Computers involve imagination and creation at the highest level. Computers are an involvement you can really get into, regardless of your trip or your karma. They are toys. they are tools, they are glorious abstractions. So it you like mental creation, toy trains, or abstractions, computers are for you. If you are interested in democracy and its future, you'd better understand computers. And It you are concerned about power and the way it is being used, and aren't we all right now, the same thing goes.

THE SOCIETY
Which brings us to our next topic.
There is no question of whether the computer will remake society: it has. You deal with computers perhaps many times a day-- or worse, computers deal with you, though you may not know it. Computers are going into everything, are intertwined with everything, and it't going to get more and more so. The reader should have a sense of the dance of options, the remarkably different ways that computers may be used; by extension. he should come to see the extraordinary range of options which confront us as a society in our future use of them. Indeed, computers have with a swoop expanded the options of everything.

But a variety of inconventent systems already touch on our lives, nuisances we must deal with all the time; and 1 fear that worse is to come. I would like to alert the reader, in no uncertain terms, that the time has come to be openly systems: and to transform criticism into action. If systems are bad, annoyine and demeaning these matters should be brought to the atention of the perpetrators. Politely be first. But just as the of he perpetrators. Polkey GM has become a matter for citizen concern and attack through legitimate channels of protest, so too should the procedural pollution of inconsiderate computer systems become a mater for the same kinds of concern. The reader should realize he can criticize and demand;

The public does not have to take WHAT'S BEING DISHED OUT.

There is already a backlash against computers, and the spirit of this anti-computer backlash is correct, but should be directed against very specific kinds of things The public should stop being mad at "computers" in the convenient systems. It is not "the people who make inno intrinsic style or cheracter "the computer." which has who use "the computer" as an excuse to inconyenience people who are at fault. The mechanisms of legitimate public you, protest-- sit-ins and so on-should to complaint over bad and inhuman computer syater

The question is, will the crummier trends continue? Or can the public learn, in time, what good and beautiful things are possible. and translate this realization into an effective demand? I do not believe this is an obscure or specialized issue. Its shadow falls across the future of mankind, if any, like a giant sequia. Either computer systems are going to go on inconveniencing our lives, or they are going to be turned around to make life better. This is one of the directions that consumerism should turn.

I have an axe to grind: I want to see computers useful to individuals, and the sooner the better, without necessary complication or human servility being required. Anyone who agrees with these principles is on my side, and anyone
who does not, is not who does not, is not

THIS BOOK IS FOR PERSONAL FREEDOM AND AGAINST RESTRICTION AND COERCION

That's really all it's about. Many people, for reasons of their own, enjoy and believe in restricting and coercing people; the reader may decide whether he is for or against this principle.

A chant you can take to the streets:
COMPUTER POWER TO THE PEOPLE! DOWN WITH CYBERCRUD:

THE FUTURE, IF ANY

Simply as a matter of citizenship, it is essential to understand the impact and uses of computers in the world of the future, if any; and to have a sense of the issues about computers that confront us as a people-- especially privacy and data banks, but also strange new additions to our economic system ("the checkless society"), our political system (half-baked vote-at-home proposals), and so on. 1 regret that there is not room to cover these here

Various companies are seeking wide public support for the sorts of things they are trying to bring about. Legislation will be proposed on which the views of the public should have a bearing. It is important that these be understood sensibly by some part of the electorate before they are made too permanent, rather than made matters of dumb assent.

Finally, and most solemnly, computers are helping us understand the unprecedented danger of our future (see "The Club of Rome," p 68). The human race may have only a short time left on earth, even if there is no war. These studies must be seen and understood by as many inteligent men of good will as possible.

THEREFORE
Welcome to the computer world, the damndest and araziest thing that has ever happened. But we. the computer people, are not crazy. It is you others who are crazy to let us have all this fun and power to ourselves.

COMPUTERS BELONG TO ALL MANKIND

AUTHOR'S CREDENTALS

B.A. philosophy, Swarthmore; graduate atudy U. of Chicago; M.A., boclology. Harvard. Mostly self-taught in computers Member of editorial bourd, Computer Decisione magaxine; listed in New York Times' Who's Who in Computers; member of Association for Computing Muchinery since 1964.

COMPUER LB

(C) 1974 Theodor H Nelson.

Additional coples are $\$ 7$ postpaid from
trong © Book Service, Box 2622 ,
Chicago, illinols 60690
packare of ten copies, $\$ 50$ postpald,

Any nitwit can understand computers, and many do. Unfortunately, due to ridiculous historical circumstances, computers have been made a mystery to most of the world And this situation does not seem to be improving. You hear more and more about computers, but to most people it's just one big blur. The people who know about computers often seem unwilling to explain things or answer your questions. Stereotyped notions develop about computers operating in fixed ways--and so confusion increases. The chasm between laymen and computer people widens fast and dangerously.

This book is a measure of desperation, so serious and abysmal is the public sense of confusion and ignorance. Anything with buttons or tights can be palmed off on the layman as a computer. There are so many different things and their differences are so important; yet to the lay public they are lumped together as "computer stuff," indistinct and beyond understanding or criticism. W's as ir people could 1 , This book is ther to the premise that

EVERYBODY SHOULD UNDERSTAND COMPUTERS.
It is intended to fill a crying need. Lots of everyday people have asked me where they can learn about computers, and I have had to say nowhere. Most of what is written abou computers for the layman is either unreadsble or silly. (Some exceptions are listed nearby; you can go to them instead of this if you want.) But virtually nowhere is the big picture simply enough explained. Nowhere can one get a simple, soup-to-nuts overview of what computers are really about, without technical or mathematical mumbojumbo, complicated examples, or talking down. This book is an attempt .
(And nowhere have I seen a simple book explaining to the layman the fabulous wonderland of computer graphics which awaits us all, a matter which means a great deal to me personally, as well as a lot to all of us in general. That's discussed on the flip side.)

Computers are simply a necessary and enjoyabl part of life, like food and books. Computers are not everything they are just an aspect of everything. and not to know this is computer illiteracy, a silly and dangerous ignorance.

Computers are as easy to understand as cameras. I have tried to make this book like a photography magazinebreezy. forceful and as vivid as posrible. This book will explain how to tell apples from oranges and which way is up. If you want to make cider, or help get things right side up. you will have to go on from here.

I am not a skillful programmer, hands-on person or eminent professional: 1 am just a computer fan, computer ranatic if you will. But if Dr. David Reuben can write about aex ! can certainly write about computers. I have written is perhe a lier to a nephew, chaty and personal. This boring for the briter for the reader, and certainly less photography magazine it throws at you a hurry. Like in merry setting Other hings are you some rudiments et the sound of We learn most everyday things by beginning with mpressions, but somehow encouraging these is not felt to be respectable.) What I heve chosen for inclusually here has been arbitrary, based on what mitht amuse and give quick insight. Any bright highechool tid, or anyone else who can stumble through the details of a photagraphy magazine, should be able to understand this book or get the main ideas. This will not make you s programer or - computer person, though it may help you talk that talk and perhaps make you feel more comfortable (or at leat able to cope) when new machines encroach on your life If you can get a chance to learn programming- see the suggeations on p. -- it's an awfully good expertence for anybody above fourth grade. Hut the main idea of this book is to help you tell apples from oranges, and which way is up. I hope you do go on from here. and have made - fow suggestions.

Iam "publishing" this beok myself, in this fira draft form. to test its viability, to see how mad the computer people get, and to see if there is as much hunger to understand computers, among all you Folks Out There, as 1 think. 1 will be interested to receive corrections and suggention for subsequent editions, if eny. (The computer theld is its own exploding universe, so I'll worry about up-to-dateness
at that time.)

Summaky of this book

Man has created the myth of "the computer" in his own image. or one of them: cold. immaculate, sterile, "scientific." oppressive.

Some people flee this image. Others, drawn toward it, have foined the cold-sterile-oppressive cult, and propagate it like a faith Many are still about this mischief, making people do things rigidly and saying it is the computer's fault

Still others see computer 2 for what they really are: versatile gizmos which may be turned to any purpose, in any style. And so a wealth of new styles and human purposes are being proposed and tried, each proponent propounding his own dream in his own very personal way

This book presents a panoply of things and dreams. Perhaps some will appeal to the reader.

HE COMPUTER PRIESTHOOD

Knowledge is power and so it tends to be hoarded. Experts in any field rarely want people to understand what they do, and generally enjoy putting people down.

Thus if we say that the use of computers is dominated by a priesthood, people who spatter you with unintelligabie answers and seem unwilling to give you straight ones. it is not that they are different in this respect from any other profession. Doctors, lawyers and construction engineers are the same way.

But computers are very special, and we have to deal with them everywhere, and this effectively gives the computer priesthood a stranglehold on the operation or all large organizations. of government bureaux, and anything else that they run. Members of Congress are now complaining about control of information by the computer peopie, that they cannot get the information even though it's on computers Next to this it seems a small matter that in orcinary companies untrained" personnel can't get straight questions answered by computer people; but it's the same phenomenon.

It is imperative for many reasons that the appalling gap between public and computer insider be closed. As the saying goes, war is too important to be lefl to the generals Guardianship of the computer can no longer be left to a priesthood. I see this as just one example of the creeping evil of Professionalism, * the control of aspects of society by eliques of insiders. There may be some chance. though. that Professionalism can be turned around. Doctors, for example, are being told that they no longer own people's bodies." And this book may suggest to some computer professionals that their position should not be as sacrosanc as they have thought, either

This in not to say that computer people are trying to louse everybody up on purpose. Like anyone trying to do a complex job as he sees fit, they dont want to be bothered with idle questions and complaints. Indeed, prob ly any group of insiders would have hoarded com the telegrap just as much. If the computer had evolved from the telegraph (which it just might have), perhaps the librarians would have hoarded it conceptually as much as the math and en gineering people have. But things have gone too far People have legitimate complaints about the way computers are used, and legitimate idess for ways they sho

In no way do I mean to condemn computer people in general. (Only the ones who don't want you to know what's going on.) The field is full of fine, imaginative people. Indeed, the number of creative and brilliant peopl known within the field for their clever and creative contri butions is considerable. They deserve to be known as widely as, say, good photographers or writers
"Computers are catching hell from growing multitudes who see them uniformly as the tools of the regulation and suffocation of all things warm moist, and human. The charges, of course are not totally unfounded. but in ind therefore sweeping form they are ineliective and hization wioh they acery. We clearly med a much more hich they decry. We clarly to alarify the thice v alu in or his in ethice of

Ken Knowiton
n "Collaborations with Artists--
Programmer's Reflections
in Nake \& Rosenfeld, eds.
$\frac{\text { Graphic Languages }}{\text { (North-Holland Pub }}$, co.),
p. 399.

- This is a side point. I see Profesionalism as a spreading disease of the present-day world, ast of poly-oligarchy by which various groups (subway conductors, social workers bricklayers) can bring things to a halt if their particular new increased demands are not met. Meanwhite, the irrele vance of ach profession increases, in proportion to its increasing rigicity.) Such lucky groups demend ore in each go-round - but permanently unemployed grows and grows

You can and must understand computers Now.

SEVEN DOLARS.

[^0]: I take thil: atan allegory.

[^1]: I coined the terri fantics, for the art and technology of and I am not about to change it just because he is now my friend and rocomate.

[^2]: * See T.H. Nelson, The Snunking of the Heart: On the

[^3]: The mere redietion frum the atomic crop
 and it haroly the problem. The radibactive poidons are gelling into the oceans. They are getulig
 into the clean watern of the land. (A December 1973 nows raport, for Instance, reveelad that
 a 1968 leak of radionetlve chemicals was into - 1968 jenk of redionetlve chemicals was into
 the water supply of Eloomfield. Colorado.) Now atomic anihuriaste call 11 a Disposul Problem
 like the quantion of where to bury the garbe tike the quation of where to bury the garbage.
 But its $=$ very different probiem. Wherever we
 The mounlains? But there is no place that ca-
 not be fuasantece againnt earthequake and recyeling it will come back. Though doxens of
 generationa might survive it. it will bo waiting

[^4]: puis cutroilt, hiay

[^5]: * Description of TRAC language primitives adapted by permission from "TRAC, A Procedure-Describing Language for the Reactive Typewriter," copyright (C) 1966 by Rockford Research, Inc.

[^6]: I am grateful to C.A.R. Kagan. of Western Electric
 Engineering Research Center, for his extensive (and finally successful) efforts to interest me in TRAC Language

